Question

Find all distinct eigenvalues of A. Then find the basic eigenvectors of A corresponding to each eigenvalue. For each eigenvalue, specify the number of basic eigenvectors corresponding to that eigenvalue, then enter the eigenvalue followed by the basic eigenvectors corresponding to that eigenvalue 2 12 6 A 0 -14 -8 0 24 14 Number of distinct eigenvalues: 1 Number of Vectors: 1 030

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution: The characteristic equation is

\small \lambda ^{3}-\left ( \mathrm{sum\: of\: diagonal\: elements }\right )\lambda ^{2}+\left ( \mathrm{sum\: of\: minor\: of\: diagonals }\right )\lambda -\left | A \right |=0

\small \therefore \lambda ^{3}-2\lambda ^{2}-4\lambda +8=0

\small \therefore \left ( \lambda -2 \right )\left ( \lambda ^{2}-4 \right )=0

\small \therefore \lambda =2\: ,\: 2\: ,\: -2

For   \small \lambda _{1}=2\: \: \: \: \: \: \left [ A-\lambda _{1}I \right ]X=0

\small \begin{bmatrix} 0 &12 &6 \\ 0 &-16 &-8 \\ 0& 24 & 12 \end{bmatrix}\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0\\ \end{bmatrix}

By \small R_{1}\times \frac{1}{6}\: \: ,\: \: R_{2}\times \frac{-1}{8}\: \: ,\: \: R_{3}\times \frac{1}{12}

\small \small \begin{bmatrix} 0 &2 &1 \\ 0 &2 &1 \\ 0& 2 & 1 \end{bmatrix}\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0\\ \end{bmatrix}

By \small R_{2}-R_{1}\: \: ,\: \: R_{3}-R_{1}

0 210 0001 11,1

The rank of \small A   is \small 1< 3   the number of unknown .

\small \therefore The system has nontrivial solution. The number of linearly independent solution is \small 3-1=2

\small \therefore 0\cdot x+2y+z=0

Put \small x=s\: ,\: \: y=t

\small \therefore z=-2t

\small \therefore The solution space is

\small X=\begin{bmatrix} s\\ t\\ -2t\\ \end{bmatrix}=s\begin{bmatrix} 1\\ 0\\ 0\\ \end{bmatrix}+t\begin{bmatrix} 0\\ 1\\ -2\\ \end{bmatrix}

\small \therefore X_{1}=\begin{bmatrix} 1\\ 0\\ 0\\ \end{bmatrix}

\small \therefore X_{2}=\begin{bmatrix} 0\\ 1\\ -2\\ \end{bmatrix}

For   \small \lambda _{2}=-2\: \: \: \: \: \: \left [ A-\lambda _{2}I \right ]X=0

\small \begin{bmatrix} 4 &12 &6 \\ 0 &-12 &-8 \\ 0& 24 & 16 \end{bmatrix}\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0\\ \end{bmatrix}

By \small R_{1}\times \frac{1}{2}\: \: ,\: \: R_{2}\times \frac{-1}{4}\: \: ,\: \: R_{3}\times \frac{1}{8}

\small \begin{bmatrix} 2 &6 &3 \\ 0 &3 &2 \\ 0& 3 & 2 \end{bmatrix}\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0\\ \end{bmatrix}

By \small R_{3}-R_{2}

\small \begin{bmatrix} 2 &6 &3 \\ 0 &3 &2 \\ 0& 0 & 0 \end{bmatrix}\begin{bmatrix} x\\ y\\ z\\ \end{bmatrix}=\begin{bmatrix} 0\\ 0\\ 0\\ \end{bmatrix}

The rank of \small A   is \small 2< 3   the number of unknown .

\small \therefore The system has nontrivial solution. The number of linearly independent solution is \small 3-2=1

\small 3y+2z=0

\small 2x+6y+3z=0

Put   \small z=3t

\small \therefore y=-2t   and   \small x=\frac{3}{2}t

\small \therefore The solution space is

\small X_{3}=\begin{bmatrix} \frac{3}{2}\\ -2t\\ 3t\\ \end{bmatrix}=t\begin{bmatrix} \frac{3}{2}\\ -2\\ 3\\ \end{bmatrix}

Number of distinct eigenvalues: \small {\color{Red} 2}

Number of vectors: \small {\color{Magenta} 3}

\small {\color{DarkGreen} 2:\left \{ \begin{bmatrix} 1\\ 0\\ 0\\ \end{bmatrix}\: \: ,\: \: \begin{bmatrix} 0\\ 1\\ -2\\ \end{bmatrix} \right \}}

\small {\color{DarkRed} -2:\left \{ \begin{bmatrix} \frac{3}{2}\\ -2\\ 3\\ \end{bmatrix} \right \}}

Add a comment
Know the answer?
Add Answer to:
Find all distinct eigenvalues of A. Then find the basic eigenvectors of A corresponding to each...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT