Question

A spring oscillator is designed with a mass of 0.193 kg. It operates while immersed in...

A spring oscillator is designed with a mass of 0.193 kg. It operates while immersed in a damping fluid, selected so that the oscillation amplitude will decrease to 1.00% of its initial value in 9.35 s. Find the required damping constant for the system.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A spring oscillator is designed with a mass of 0.193 kg. It operates while immersed in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring oscillator is designed with a mass of 0.1480.148 kg. It operates while immersed in...

    A spring oscillator is designed with a mass of 0.1480.148 kg. It operates while immersed in a damping fluid, selected so that the oscillation amplitude will decrease to 1.00% of its initial value in 5.845.84 s. Find the required damping constant for the system.

  • A mass of 1.32 kg is connected to a spring of spring constant 8.81 N/m ....

    A mass of 1.32 kg is connected to a spring of spring constant 8.81 N/m . An oscillation is started by pulling the mass to the right to amplitude 0.582m before release and the oscillator moves in air. The oscillation decays to 18.2% of the original amplitude in 58.2 seconds. the damping constant of the oscillation is 7.73*10^-2 kg/s total energy has the system lost in this time due to air damping = 1.44 j the amplitude of the oscillation...

  • A horizontal spring of spring constant k = 125N/m is resting at its equilibrium length. One end o...

    A horizontal spring of spring constant k = 125N/m is resting at its equilibrium length. One end of the spring is attached to a wall, and the other end is attached to a mass M = 200g. The whole system is immersed in a viscous fluid with linear drag coefficient b = 0.1 kg/s. The mass is pulled 10cm from its equilibrium position and released from rest. (a) (0.5 pt) What would be the oscillation period if the system were...

  • An undamped 2.19 kg horizontal spring oscillator has a spring constant of 34.5 Nm. While oscillating,...

    An undamped 2.19 kg horizontal spring oscillator has a spring constant of 34.5 Nm. While oscillating, it is found to have a speed of 2.50 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? amplitude of oscillation: What is the oscillator's total mechanical energy as it passes through a position that is 0.584 of the amplitude away from the equilibrium position? total mechanical energy:

  • An undamped 1.02-kg horizontal spring oscillator has a spring constant of 29.9 N/m. While oscillating, it...

    An undamped 1.02-kg horizontal spring oscillator has a spring constant of 29.9 N/m. While oscillating, it is found to have a speed of 2.21 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? What is the oscillator\'s total mechanical energy as it passes through a position that is 0.701 of the amplitude away from the equilibrium position?

  • A car and its suspension system act as a block of mass m= on a vertical spring with k 1.2 x 10 N m, which is damped...

    A car and its suspension system act as a block of mass m= on a vertical spring with k 1.2 x 10 N m, which is damped when moving in the vertical direction by a damping force Famp =-rý, where y is the 1200 kg sitting 4. (a) damping constant. If y is 90% of the critical value; what is the period of vertical oscillation of the car? () by what factor does the oscillation amplitude decrease within one period?...

  • A 9.10 kg object oscillates at the end of a vertical spring that has a spring...

    A 9.10 kg object oscillates at the end of a vertical spring that has a spring constant of 2.25 times 10^4 N/m. The effect of air resistance is represented by the damping coefficient b = 3.00 N s/m. Calculate the frequency of the dampened oscillation. By what percentage does the amplitude of the oscillation decrease in each cycle? Find the time interval that elapses while the energy of the system drops to 3.00% of its initial value.

  • An undamped 2.36-kg horizontal spring oscillator has a spring constant of 24.0 N/m. While oscillating, it...

    An undamped 2.36-kg horizontal spring oscillator has a spring constant of 24.0 N/m. While oscillating, it is found to have a speed of 2.70 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? 0.846m What is the oscillator\'s total mechanical energy as it passes through a position that is 0.794 of the amplitude away from the equilibrium position? _______J

  • An undamped 2.87 kg horizontal spring oscillator has a spring constant of 26.5 N/m. While oscillating,...

    An undamped 2.87 kg horizontal spring oscillator has a spring constant of 26.5 N/m. While oscillating, it is found to have a speed of 3.02 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? amplitude of oscillation: What is the oscillator's total mechanical energy as it passes through a position that is 0.629 of the amplitude away from the equilibrium position? total mechanical energy:

  • A damped harmonic oscillator consists of a block of mass 5kg and a spring with spring...

    A damped harmonic oscillator consists of a block of mass 5kg and a spring with spring constant k = 10 N/m. Initially, the system oscillates with an amplitude of 63 cm. Because of the damping, the amplitude decreases by 56% of its initial value at the end of four oscillations. What is the value of the damping constant, b? What percentage of initial energy has been lost during these four oscillations?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT