Question

6) [8 pts] In the diagram shown, the uniform rod is free to pivot about its base in the plane of the paper. It is motionless and stable at an angle of 30 degrees from the horizontal.The rod has a mass of 4.0 kg and a length of 60.0 cm. The 3.0 kg mass is suspended 40.0 cm from the pivot end of the rod. The wire is anchored 20 cm (vertically) above the pivot point, and is horizontal. Find the tension Fr in the wire. Hint: consider the different torques about the ivot point. The moment of inertia for a rod of mass M and length L, about its end, is 1/3 し2. wire 20 cm 30P pivat point3.0 kg

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution: 3 Tm 2o PIg ica Fy Forces acng onte d Yng ↓ , weight ot tle moss at 40an.frm pivot ension in the woixe , 2o Cm abo

Add a comment
Know the answer?
Add Answer to:
6) [8 pts] In the diagram shown, the uniform rod is free to pivot about its...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A uniform rod of mass m-6 kg has length L = 60 cm . Instead of...

    A uniform rod of mass m-6 kg has length L = 60 cm . Instead of pivoting it at its end, we pivoted it at L/3 from the end as shown in the figure, we now set the rod into small angle oscillations. What is the period of the oscillation given that the moment of inertia about the pivot point is ml2/9? L/3 Pivot L С.М. 2L/3

  • (Figure 1) A thin rod of mass mr and length 2L is allowed to pivot freely about its center, as shown in the diagram.

    Pivoted Rod with Unequal Masses (Figure 1) A thin rod of mass mr and length 2L is allowed to pivot freely about its center, as shown in the diagram. A small sphere of mass m1 is attached to the left end of the rod, and a small sphere of mass m2 is attached to the right end. The spheres are small enough that they can be considered point particles. The gravitational force acts downward, with the magnitude of the gravitational acceleration...

  • L- Pivot Point 13.) A uniform, thin rod of length L and mass M is allowed to pivot about its end,...

    L- Pivot Point 13.) A uniform, thin rod of length L and mass M is allowed to pivot about its end, as shown in the figure above (a) Using integral calculus, derive the rotational inertia for the rod around its end to show that it is ML2/3 The rod is fixed at one end and allowed to fall from the horizontal position A through the vertical position B. (b) Derive an expression for the velocity of the free end of...

  • The diagram shows a thin rod of uniform mass distribution pivoted about one end by a...

    The diagram shows a thin rod of uniform mass distribution pivoted about one end by a pin passing through that point. The mass of the rod is 0.460 kg and its length is 1.50 m. When the rod is released from its horizontal position, it swings down to the vertical position as shown. A thin rod labeled M is initially horizontal, with a pivot on its left end. The rod then rotates clockwise by its left end until it is...

  • A uniform rod of mass m- 9 kg has length L-70 cm. Instead of pivoting it...

    A uniform rod of mass m- 9 kg has length L-70 cm. Instead of pivoting it at its end, we pivoted it at L/3 from the end as shown in the figure. We now set the rod into small angle oscillations. What is the period of the oscillation given that the moment of inertia about the pivot point is mL2/9? L/3 Pivot L с.м. 2L/3

  • (Figure 1)The figure shows a simple model of a seesaw These consist of a plank/rod of mass mr and length 2x allowed to pivot freely about its center (or central axis), as shown in the diagram.

    (Figure 1)The figure shows a simple model of a seesaw These consist of a plank/rod of mass mr and length 2x allowed to pivot freely about its center (or central axis), as shown in the diagram. A small sphere of mass m1 is attached to the left end of the rod, and a small sphere of mass m2 is attached to the right end. The spheres are small enough that they can be considered point particles. The gravitational force acts...

  • Q21 (15 points): A uniform rod of mass m 1.5 kg and length d- 2.0 m...

    Q21 (15 points): A uniform rod of mass m 1.5 kg and length d- 2.0 m is supported by a pivot point P at its top and is free to rotate iın the vertical plane. A block of mass m2 0.8 kg is attached to the other end of the rod. The rod-block system is initially at rest, and a 1g bullet is fired horizontally into the rod through a point x 08 d below the pivot P Assume that...

  • Problem 3. (24 points) A uniform rod of mass M and length d is free to...

    Problem 3. (24 points) A uniform rod of mass M and length d is free to pivot about one end. The moment of inertia of the rod about the pivot is I = Md2/3, and the rod's center of mass is at its midpoint. The rod is released from rest at angle above the horizontal, then rotates downward under the influence of gravity. d x e When the rod reaches angle below the horizontal, determine (a) (4 points) the rotational...

  • Questions 10-12 A uniform rod of mass M0.6 kg and length L-1 m with a point...

    Questions 10-12 A uniform rod of mass M0.6 kg and length L-1 m with a point mass m 0.3 kg attached z to its free end is rotating with angular speed w1 figure 00 rad/, about the z-axis, aa p- the rotational inertia of the system about point P in units of kym. (Fr a uniform rod of M.L 10 (b)0.5 (e) 1.5()25 () 2.0

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT