Question

5) In the figure below, a constant horizontal force Fapp of magnitude 10.0 N is applied to a wheel of mass 10.0 kg and radius
0 0
Add a comment Improve this question Transcribed image text
Answer #1

9 Face = lon Apply newton second law of motion in the direction of fore applied. 7 та O Farma Fapp- fs = ma * 10-fs = 10x0.6

Add a comment
Know the answer?
Add Answer to:
5) In the figure below, a constant horizontal force Fapp of magnitude 10.0 N is applied...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, a constant horizontal force F app of magnitude 9.7 N is applied to...

    In the figure, a constant horizontal force F app of magnitude 9.7 N is applied to a wheel of mass 14 kg and radius 0.44 m. The wheel rolls smoothly on the horizontal surface, and the acceleration of its center of mass has magnitude 0.49 m/s2. (a) What is the magnitude of the frictional force on the wheel? (b) What is the rotational inertia of the wheel about the rotation axis through its center of mass? app

  • In the figure, a constant horizontal force F app of magnitude 9.7 N is applied to...

    In the figure, a constant horizontal force F app of magnitude 9.7 N is applied to a wheel of mass 11 kg and radius 0.19 m. The wheel rolls smoothly on the horizontal surface, and the acceleration of its center of mass has magnitude 0.38 m/s2. (a) What is the magnitude of the frictional force on the wheel? (b) What is the rotational inertia of the wheel about the rotation axis through its center of mass? of app

  • In figure below, a constant horizontal force of magnitude 12 N is applied to a uniform...

    In figure below, a constant horizontal force of magnitude 12 N is applied to a uniform solid cylinder by fishing line wrapped around the cylinder. The mass of the cylinder is 10 kg, its radius is 0.10 m, and the cylinder rolls smoothly on the horizontal surface. (a) What is the magnitude of the acceleration of the center of mass of the cylinder? (b) What is the magnitude of the angular acceleration of the cylinder about the center of mass?...

  • Q3: In the figure, a constant horizontal force of magnitude 16 N applies to a wheel...

    Q3: In the figure, a constant horizontal force of magnitude 16 N applies to a wheel of mass8 kg and radius 0.4 m from its center of mass. The wheel rolls smoothly on the horizontal surface. If the rotational inertia of the wheel is 0.85 kg.m2, find the a) linear and angular acceleration of the wheel, b) direction and magnitude of the frictional force on the wheel? Answer: a) a = 1.2 in/s2 and α = 3 rad/s. b) 6.4...

  • Force on wheel (hrw8c11p7) A constant horizontal force of 14.0 N is applied to a wheel...

    Force on wheel (hrw8c11p7) A constant horizontal force of 14.0 N is applied to a wheel of mass 12.0 kg and radius 0.20 m as shown in the figure. The wheel rolls without slipping on the horizontal surface, and the acceleration of its center of mass is 0.852 m/s2. What is the magnitude of the frictional force on the wheel? Tries 0/8 What is the rotational inertia of the wheel about an axis through its center of mass and perpendicular...

  • (hrw8c11p7) A constant horizontal force of 6.0 N is applied to a wheel of mass 12.0...

    (hrw8c11p7) A constant horizontal force of 6.0 N is applied to a wheel of mass 12.0 kg and radius 0.30 m as shown in the figure. The wheel rolls without slipping on the horizontal surface, and the acceleration of its center of mass is 0.225 m/s2 What is the magnitude of the frictional force on the wheel? Submit Answer Tries 0/8 What is the rotational inertia of the wheel about an axis through its center of mass and perpendicular to...

  • In the figure, a constant horizontal force F app of magnitude 10 N is applied to...

    In the figure, a constant horizontal force F app of magnitude 10 N is applied to a wheel of mass 10 kg and radius 0.17 m. The wh heel rolls smoothly on the horizontal surface, and the rotation axis through its center s as magnitude .73 m/5. (a) What is the magnitude of the rictional force on the whed' (o) What i he rotationa nerni o nhet bu app (a) Number Units Units (b) Number

  • A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center

    A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see figure . The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg·m2. The wheel is initially at rest at the top of a surface that is inclined at angleθ = 43.6o with the horizontal; the axle rests on the surface while the wheel extends into a...

  • Chapter 11, Problem 081 A uniform wheel of mass 10.0 kg and radius 0.400 m is...

    Chapter 11, Problem 081 A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see the figure). The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg-m2. The wheel is initially at rest at the top of a surface that is inclined at angle 58.4° with the horizontal; the axle rests on the surface while the wheel...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT