Question
Physics 2, unit: Electrostatics. Please answer all

A spherical insulator with a radius 1.0 m and a charge density of -9 uC/m2 distributed uniformly throughout. Concentric to th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Fen dalenmivingy the oleehme eld inside ot a unitoamty enansed hphene ol Radins Rand ehemt denhy Consider a Caniau suoee al aE a (2, 3, 4) is, 3152) +(52)20) 卝ㄧ一卝- F 3F 3F 4F 3 ワし 3 8 F C 2 4 6 F 2で In ,onies we knoo, capaciton Akone ave charge3F A. 20V (hoon ii ) 24/4F AB er equivalent-capacitan erad GF8F 1 lo 9 3F C F 户一」 4F change at in 4 F 2CV2 I 43 2, 45.72 4the charge on 6F capacitor and 3F capacitor= 22.86 C and on 4F capacitor = 45.72 C and on 8F capacitor = 68.57 C

Add a comment
Know the answer?
Add Answer to:
Physics 2, unit: Electrostatics. Please answer all A spherical insulator with a radius 1.0 m and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. A solid spherical insulator with radius Ry is surrounded by a conducting spherical shell with...

    3. A solid spherical insulator with radius Ry is surrounded by a conducting spherical shell with inner radius R2 and outer radius R3 and with the same center point as the central sphere. The central sphere has charge density p yr3, where r is the distance from the common center of the sphere and shell. The conducting shell has charge Q. Find the magnitude of the electric field as a function of r in the following regions: R2 (a)r s...

  • PHYSICS A spherical conductor (radius = 1.0 cm) with a charge of 2.0 pC is within...

    PHYSICS A spherical conductor (radius = 1.0 cm) with a charge of 2.0 pC is within a concentric hollow spherical conductor (inner radius = 3.0 cm, outer radius = 4.0 cm) which has a total charge of -3.0 pC. What is the magnitude of the electric field 2.0 cm from the center of these conductors? GRAPH THE ELECTRIC FIELD E(r)

  • Q1) A spherical conductor (radius = 1.0 cm) with a charge of 2.0 pC is within...

    Q1) A spherical conductor (radius = 1.0 cm) with a charge of 2.0 pC is within a concentric hollow spherical conductor (inner radius = 3.0 cm, outer radius = 4.0 cm) which has a total charge of -3.0 pC. What is the magnitude of the electric field 2.0 cm from the center of these conductors. Q2)A charge is uniformly distributed along the entire x-axis. If each 20 cm length of the x-axis carries 2.0 nC of charge. What is the...

  • A spherical metal (conductor) has a spherical cavity in side. There is a single point charge...

    A spherical metal (conductor) has a spherical cavity in side. There is a single point charge Q at the cavity center. The total charge on the meta is 0 (a) Describe how the charge is distributed on the E=? sphere. Would the surface charge density be u form at each surface? (b) Draw the electric field lines. c) Find the electric field for a point outside the metal. Express it in terms of r, the distance of the point in...

  • A solid conducting sphere with a radius of 0.020 m carries a net charge of -2...

    A solid conducting sphere with a radius of 0.020 m carries a net charge of -2 x 10^-9 C. A thin, spherical conducting shell with an inner radius of 0.050 m and an outer radius of 0.052 m is concentric on the solid sphere and carries a net charge of +2 x 10^-9 C. Find the magnitudes of the electric field at r = 0.10 m, 0.025 m, and 0.073 m.

  • The figure represents a solid sphere, radius of 3.80 m, concentric with a spherical shell of...

    The figure represents a solid sphere, radius of 3.80 m, concentric with a spherical shell of radius 9.50 m. The inner sphere has a charge of -100e on it and the outer shell has a net charge of +100e on it. Determine the magnitude and direction of the electric field at a distance of 5.80 m from the center. 3 Select one: a. 48.3 mV/m, radially inward. b. 38.7mV/m, radially outward. c. 58.3 mV/m, radially inward. d. 26.3 mV/m, radially...

  • I have already solved for the correct answers on #1,and #2; however, I have not been...

    I have already solved for the correct answers on #1,and #2; however, I have not been able to get answers for #3,#4, and #5. A solid insulating sphere of radius a = 4 cm is fixed at the origin of a co-ordinate system as shown. The sphere is uniformly charged with a charge density ρ = -114 μC/m3. Concentric with the sphere is an uncharged spherical conducting shell of inner radius b = 12.9 cm, and outer radius c =...

  • A solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q

    Guided Problem 4 -Gauss's LawA solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are b and c as shown in the following figure. (a) Find the magnitude of the electric field in the regions: r<a, a<r<b, and r>c. (b) Determine the induced charge per unit area on the inner and outer surfaces of the hollow sphere.Solution scheme:...

  • A solid conducting sphere of radius 2.00 cm has a charge 11.00 µC. A conducting spherical...

    A solid conducting sphere of radius 2.00 cm has a charge 11.00 µC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge of -1.00 µC. (Take radially outward as the positive direction.) (a) Find the electric field at r = 1.00 cm from the center of this charge configuration. MN/C (b) Find the electric field at r = 3.00 cm from the center of...

  • Electrostatics problem 2. An infinitely long circular cylinder of radius a and dielectric constant E is...

    Electrostatics problem 2. An infinitely long circular cylinder of radius a and dielectric constant E is placed with its axis along the z-axis and is put in an electric field which would have been uniform in the absence of the cylinder, pointing along the x-axis (see figure). Find the total electric field at all points outside and inside the cylinder. Find the bound surface charge density.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT