Question

Problem 2 Let X is a random variable with Poisson distribution X ~ Poisson(λ), (a) Find E(X1X2 i). λ > 0. 、 (b) Find E(xIx2). (c)Prove that λ>2-2a-ka for λ>0.

a b and c please

and thankyou

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The Poisson distribution has the probability distribution P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!} .

(a) E(X|X \geq 1) = \sum_{x \geq 1} xP(X=x) or E(X|X \geq 1) = \sum_{x \geq 1} x\frac{\lambda^x e^{-\lambda}}{x!} or E(X|X \geq 1) = 1*\frac{\lambda^1 e^{-\lambda}}{1!} + 2*\frac{\lambda^2 e^{-\lambda}}{2!} + 3*\frac{\lambda^3 e^{-\lambda}}{3!} + 4*\frac{\lambda^1 e^{-\lambda}}{4!} + ... or E(X|X \geq 1) = 0*\frac{\lambda^0 e^{-\lambda}}{0!} + 1*\frac{\lambda^1 e^{-\lambda}}{1!} + 2*\frac{\lambda^2 e^{-\lambda}}{2!} + 3*\frac{\lambda^3 e^{-\lambda}}{3!} + ... - 0*\frac{\lambda^0 e^{-\lambda}}{0!} or E(X|X \geq 1) = \sum_{x \geq 0} x\frac{\lambda^x e^{-\lambda}}{x!} - 0*\frac{\lambda^0 e^{-\lambda}}{0!} or E(X|X \geq 1) = E(X) - 0*\frac{\lambda^0 e^{-\lambda}}{0!} or E(X|X \geq 1) = \lambda - 0 or E(X|X \geq 1) = \lambda .

(b) E(X|X \geq 2) = \sum_{x \geq 2} xP(X=x) or E(X|X \geq 2) = \sum_{x \geq 2} x\frac{\lambda^x e^{-\lambda}}{x!} or E(X|X \geq 2) = 2*\frac{\lambda^2 e^{-\lambda}}{2!} + 3*\frac{\lambda^3 e^{-\lambda}}{3!} + 4*\frac{\lambda^1 e^{-\lambda}}{4!} + 5*\frac{\lambda^5 e^{-\lambda}}{5!} + ... or E(X|X \geq 2) = 0*\frac{\lambda^0 e^{-\lambda}}{0!} + 1*\frac{\lambda^1 e^{-\lambda}}{1!} + 2*\frac{\lambda^2 e^{-\lambda}}{2!} + 3*\frac{\lambda^3 e^{-\lambda}}{3!} + 4*\frac{\lambda^4 e^{-\lambda}}{4!} + 5*\frac{\lambda^5 e^{-\lambda}}{5!} ... - 0*\frac{\lambda^0 e^{-\lambda}}{0!} - 1*\frac{\lambda^1 e^{-\lambda}}{1!} or E(X|X \geq 2) = \sum_{x \geq 0} x\frac{\lambda^x e^{-\lambda}}{x!} - 0*\frac{\lambda^0 e^{-\lambda}}{0!} - 1*\frac{\lambda^1 e^{-\lambda}}{1!} or E(X|X \geq 2) = E(X) - 0*\frac{\lambda^0 e^{-\lambda}}{0!} - 1*\frac{\lambda^1 e^{-\lambda}}{1!} or E(X|X \geq 2) = \lambda - 0 - \lambda e^{-\lambda} or E(X|X \geq 2) = \lambda - \lambda e^{-\lambda} .

(c) We have to prove that \lambda > 2 - 2e^{-\lambda} - \lambda e^{-\lambda} or \lambda + 2e^{-\lambda} + \lambda e^{-\lambda} > 2 for \lambda > 0 .

We have \lambda + 2e^{-\lambda} + \lambda e^{-\lambda} = \lambda + e^{-\lambda} (2 + \lambda) , and taking the limit that \lambda \rightarrow 0 , we have \underset{\lambda \rightarrow 0}{lim} [\lambda + 2e^{-\lambda} + \lambda e^{-\lambda}] = \underset{\lambda \rightarrow 0}{lim} [\lambda + e^{-\lambda} (2 + \lambda)] or \underset{\lambda \rightarrow 0}{lim} [\lambda + 2e^{-\lambda} + \lambda e^{-\lambda}] = \underset{\lambda \rightarrow 0}{lim} \lambda + \underset{\lambda \rightarrow 0}{lim} [e^{-\lambda} (2 + \lambda)] or \underset{\lambda \rightarrow 0}{lim} [\lambda + 2e^{-\lambda} + \lambda e^{-\lambda}] = 0 + 2 * \underset{\lambda \rightarrow 0}{lim} [e^{-\lambda}] or \underset{\lambda \rightarrow 0}{lim} [\lambda + 2e^{-\lambda} + \lambda e^{-\lambda}] = 0 + 2 * 1 or \underset{\lambda \rightarrow 0}{lim} [\lambda + 2e^{-\lambda} + \lambda e^{-\lambda}] = 2 .

The reason being that for any constant c>0, as x(>0) decreases, c^x tends to 1, and so does c^{-x} . The difference is that c^{x} > 1 for c>0 and x>0, and it decreases to 1, while c^{-x} <1 , and it increases to 1.

The worst case where lambda is zero, is where \lambda + 2e^{-\lambda} + \lambda e^{-\lambda} = 2 . For any \lambda > 0 , \lambda + 2e^{-\lambda} + \lambda e^{-\lambda} > 2 .

Further, as  \frac{\partial }{\partial \lambda}(\lambda + 2e^{-\lambda} + \lambda e^{-\lambda}) = 1 - 2e^{-\lambda} + e^{-\lambda} - \lambda e^{-\lambda} or \frac{\partial }{\partial \lambda}(\lambda + 2e^{-\lambda} + \lambda e^{-\lambda}) = 1 - e^{-\lambda} - \lambda e^{-\lambda} and e^{-\lambda} - \lambda e^{-\lambda} is always less than one for 0 < \lambda < 1 , meaning that \frac{\partial }{\partial \lambda}(\lambda + 2e^{-\lambda} + \lambda e^{-\lambda}) > 0 for all lambda, which funrther means that the \lambda + 2e^{-\lambda} + \lambda e^{-\lambda} is increasing function in lambda, and never decreases as lambda increases.

Hence, we can say that for \lambda > 0 , \lambda + 2e^{-\lambda} + \lambda e^{-\lambda} > 2 or \lambda > 2 - 2e^{-\lambda} - \lambda e^{-\lambda} .

A graph for lambda even greater than 1 is as below.

Add a comment
Know the answer?
Add Answer to:
a b and c please and thankyou Problem 2 Let X is a random variable with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT