Question

Solve the initial value problem correctly yy'+x=sqrt(x^2+y^2) with y(2)=-sqrt(12)

a) To solve this, we should use the substitution

u = 

u^{\,\prime} =

Enter derivatives using prime notation (e.g., you would enter y^{\,\prime} for \frac{dy}{dx}).

b) After the substitution from the previous part, we obtain the following linear differential equation in x, u, u^{\,\prime}.

c) The solution to the original initial value problem is described by the following equation in x, y.


0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 9 more requests to produce the answer.

1 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Solve the initial value problem correctly yy'+x=sqrt(x^2+y^2) with y(2)=-sqrt(12)
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Solve the initial value problem

    Solve the initial value problem \(y y^{\prime}+x=\sqrt{x^{2}+y^{2}}\) with \(y(3)=\sqrt{40}\)a. To solve this, we should use the substitution\(\boldsymbol{u}=\)\(u^{\prime}=\)Enter derivatives using prime notation (e.g., you would enter \(y^{\prime}\) for \(\frac{d y}{d x}\) ).b. After the substitution from the previous part, we obtain the following linear differential equation in \(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{u}^{\prime}\)c. The solution to the original initial value problem is described by the following equation in \(\boldsymbol{x}, \boldsymbol{y}\)Previous Problem List Next (1 point) Solve the initial value problem yy' + -y2 with...

  • part c Solve the initial value problem yy' + + y with y(4) - 33 a....

    part c Solve the initial value problem yy' + + y with y(4) - 33 a. To solve this, we should use the substitution u=x^2+y^2 help (formulas '= 2x+2yi help (formulas) Enter derivatives using prime notation (e.g.. you would enter y' for ). N b . After the substitution from the previous part, we obtain the following linear differential equation in ruu 1/2 sqrt() help. (equations e. The solution to the original initial value problem is described by the following...

  • (15 points) Solve the initial value problem y' = (x + y - 1)? with y(0)...

    (15 points) Solve the initial value problem y' = (x + y - 1)? with y(0) = 0. a. To solve this, we should use the substitution help (formulas) help (formulas) Enter derivatives using prime notation (e.g.. you would enter y' for '). u= b. After the substitution from the previous part, we obtain the following linear differential equation in 2, u, u'. help (equations) c. The solution to the original initial value problem is described by the following equation...

  • Solve the initial value problem 2yy'+3=y2+3x with y(0)=4

    Solve the initial value problem 2yy'+3=y2+3x with y(0)=4a. To solve this, we should use the substitution u=With this substitution,y=y'=uEnter derivatives using prime notation (e.g., you would enter y' for dy/dx ).b. After the substitution from the previous part, we obtain the following linear differential equation in x, u, u'c. The solution to the original initial value problem is described by the following equation in x, y.

  • Solve the initial value problem 2yy' + 2 = y2 + 2x with y(0) = 4. To solve this, we should use the substitution u = With this substitution, y = y' = Enter derivatives using prime notation (e.g., you would enter y' for dy/dx). After the substitution from t

    Solve the initial value problem 2yy' + 2 = y2 + 2x with y(0) = 4. To solve this, we should use the substitution u = With this substitution, y = y' = Enter derivatives using prime notation (e.g., you would enter y' for dy/dx). After the substitution from the previous part, we obtain the following linear differential equation in x, u, u'. The solution to the original initial value problem is described by the following equation in x, y.

  • (1 point) Solve the initial value problem 2yy' 3 = y 3x with y(0) = 9...

    (1 point) Solve the initial value problem 2yy' 3 = y 3x with y(0) = 9 a. To solve this, we should use the substitution y^2 help (formulas) With this substitution, help (formulas) y' = help (formulas) Enter derivatives using prime notation (e.g., you would enter y' for b. After the substitution from the previous part, we obtain the following linear differential equation in x, u, u'. help (equations) c. The solution to the original initial value problem is described...

  • (1 point) Solve the initial value problem 2yy' + 4 = y2 + 4.r with y(O)...

    (1 point) Solve the initial value problem 2yy' + 4 = y2 + 4.r with y(O) = 5. a. To solve this, we should use the substitution help (formulas) With this substitution, y = help (formulas) y' = help (formulas) Enter derivatives using prime notation (e.g., you would enter y' for ). b. After the substitution from the previous part, we obtain the following linear differential equation in 2, u, u'. help (equations) C. The solution to the original initial...

  • [ 15 ports) Save the initial value problem y' - (x + y - 1)' with...

    [ 15 ports) Save the initial value problem y' - (x + y - 1)' with y(0) - 0 a to solve this, we should use the substitution help (formulas) help (formulas) Enter derivatives using prime notation (e 9. you would enter y' for d. After the substitution from the previous part, we obtain the following linear differential equation in z, u, u' help (equations) c The solution to the orginal initial value problem is described by the following equation...

  • (1 point) Solve the Bernoulli initial value problem - 2 'y', y(1)=2 For this example we...

    (1 point) Solve the Bernoulli initial value problem - 2 'y', y(1)=2 For this example we haven We obtain the equation + given by Solving the resulting first order linear equation for u we obtain the general solution with arbitrary constant Then transforming back into the variables 2 and y and using the initial condition to find C Finally we obtain the explicit solution of the initial value problem as

  • 4. Consider the following initial value problem: y(0) = e. (a) Solve the IVP using the...

    4. Consider the following initial value problem: y(0) = e. (a) Solve the IVP using the integrating factor method. (b) What is the largest interval on which its solution is guaranteed to uniquely exist? (c) The equation is also separable. Solve it again as a separable equation. Find the particular solution of this IVP. Does your answer agree with that of part (a)? 5 Find the general solution of the differential equation. Do not solve explicitly for y. 6,/Solve explicitly...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT