Question

The rigid bar AC is supported by two axial bars (1) and (2). Both axial bars are made of bronze [E = 100 GPa; a = 18 x 10-6 m

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Remove the bar cet A&C To 4=1160 mm A = 226mm? A TB || L2=2000mm I A2= 362 mm? Tato b JP equilibrium equation EMAJO PXA-P2 x

b strain in our in bax 2 = D2 = 1.78x105P +0.792, 1020 xót Ii - 2000 1178x105P +0.792 = 1020x17642000 1178x105 P = 2104-0.7

Comment for any doubt about this solution thank you

Don't forget to upvote if you got your answer

Add a comment
Know the answer?
Add Answer to:
The rigid bar AC is supported by two axial bars (1) and (2). Both axial bars...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Chapter 3, Reserve Problem 122 The rigid bar AC is supported by two axial bars (1)...

    Chapter 3, Reserve Problem 122 The rigid bar AC is supported by two axial bars (1) and (2). Both axial bars are made of bronze [E = 100 GPa; a = 18 × 10-mm/mm/°C]. The cross-sectional area of bar (1) is A1 = 236 mm2 and the cross- sectional area of bar (2) is Az = 389 mm2. After load P has been applied and the temperature of the entire assembly has increased by 26°C, the total strain in bar...

  • The rigid bar shown is supported by axial bar (1) and by a pin connection at C. Axial bar (1) has...

    The rigid bar shown is supported by axial bar (1) and by a pin connection at C. Axial bar (1) has a cross-sectional area of A1 = 250 mm2, an elastic modulus of E = 200 GPa, and a coefficient of thermal expansion of α= 11.3 × 10-6/°C. The pin at C has a diameter of 40 mm. After load P has been applied and the temperature of the entire assembly has been increased by 10°C, the total strain in...

  • P2.006 (Multistep) The rigid bar ABC is supported by three bars as shown in the figure....

    P2.006 (Multistep) The rigid bar ABC is supported by three bars as shown in the figure. Bars (1) attached at A and C are identical, each having a length of Li158 in. Bar (2) has a length of L2-96 in.; however, there is a clearance of c 0.26 in. between bar (2) and the pin in the rigid bar at B. There is no strain in the bars before the load P is applied, and a 59 in. After application...

  • The pin-connected structure shown in Fig. 5 consists of a rigid bar ABCD and two 1,500-mm-long...

    The pin-connected structure shown in Fig. 5 consists of a rigid bar ABCD and two 1,500-mm-long bars. Bar (1) is steel [E=200 GPa] with a cross-sectional area of A1 = 510 mm2. Bar (2) is an aluminium alloy [E-70 GPa] with a cross-sectional area of A2 1,300 mm2. All bars are unstressed before the load P is applied. If a concentrated load of P 200 kN acts on the structure at D determine: (a) the normal stresses in both bars...

  • Plz do it right cus it’s really important question connection at C. Axial bar (1) has...

    Plz do it right cus it’s really important question connection at C. Axial bar (1) has a 15. The rigid bar shown is supported by axial bar (1) and by a pin cross-sectional area of A, 350 mm2, an elastic modulus of E 200 thermal expansion of a 12.8 x 10rC. The pin at Chas a diameter of 35 been applied and the temperature of the entire assembly has been strain in bar (1) is measured as 950 ue (elongation)....

  • A rigid bar ABCD is supported by two bars as shown in Figure below.

    A rigid bar ABCD is supported by two bars as shown in Figure below. There is no strain in the vertical bars before load P is applied. After load P is applied, the normal strain in bar (1) is - 570 μm/m. Determine: (a) the normal strain in bar (2) (b) the normal strain in bar (2) if there is a 1 mm gap in the connection at pin C before the load is applied. (c) the normal strain in bar (2) if...

  • (5 pts) Rigid bar ABCD is supported by bars BE and CF and a pin at...

    (5 pts) Rigid bar ABCD is supported by bars BE and CF and a pin at A. There is no strain in the vertical bars before P is applied. After P is applied, the normal strain in bar BE is -1100 strains (i.e., -1100 x 10-6 mm/mm) Determine: 1425 mm 200 mm 320 mm 100 mm Rigid bar 860 mm a) the normal strain in bar CF. b) the normal strain in bar CF if there a 1-mm gap in...

  • Rigid bar is supported by a pin-connected axial bar (1) and a pin connection at C...

    Rigid bar is supported by a pin-connected axial bar (1) and a pin connection at C as shown in Figure Q1. Member (1) is a 20 mm wide by 9 mm thick rectangular bar made of Steel Alloys (A992). The total strain in bar (1) is measured as 925 ue (925x10°). The pin at C has an ultimate shear strength of ty = 345MPa. Determine: (a) The axial force in member (1). [9 marks] (b) The factor of safety in...

  • Chapter 5, Problem 35P Bookmark Show all steps ON Problem The pin-connected structure shown in Figure...

    Chapter 5, Problem 35P Bookmark Show all steps ON Problem The pin-connected structure shown in Figure P5.35/36 consists of a rigid beam ABCD and two supporting bars. Bar (1) is a bronze alloy [E105 GPa] with a cross-sectional area of A1 290 mm2. Bar (2) is an aluminum alloy [E70 GPa] with a cross-sectional area of A2 650 mm2. If a load of P 30 kN is applied at B, determine (a) the normal stresses in both bars (1) and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT