Question

Dynamic- Equation of Motion for a System of Particles

To be able to set up and analyze the free-body diagrams and equations of motion for a system of particles.

Consider the mass and pulley system shown. Mass m1m1 = 29 kg and mass m2m2 = 12 kg . The angle of the inclined plane is given, and the coefficient of kinetic friction between mass m2 and the inclined plane is μk=0.19. Assume the pulleys are massless and frictionless.

Screen Shot 2021-11-09 at 22.17.26.png

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 9 more requests to produce the answer.

1 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Dynamic- Equation of Motion for a System of Particles
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Two blocks with mass M1 and M2 are arranged as shown with M sitting on an inclined plane

    Two blocks with mass M1 and M2 are arranged as shown with M sitting on an inclined plane and connected with a massless unstretchable string running over a massless, frictionless pulley to M2, which is hanging over the ground. The two masses are released initially from rest. The inclined plane has coefficients of static and kinetic friction μs and μk respectively where the angle θ is small enough that mass M1 , would remain at rest due to static friction if...

  • A m1 = 1.25-kg mass is connected to a m2 = 6.90-kg mass by a light...

    A m1 = 1.25-kg mass is connected to a m2 = 6.90-kg mass by a light string that passes over a massless and frictionless pulley as shown. The coefficient of kinetic friction between m1 and the horizontal plane is μk = 0.42. The coefficient of kinetic friction between m2 and the θ = 34.5° incline is μk = 0.35. br /> Find the tension in the string in N.

  • A block of mass m1 is placed on an inclined plane with slope angle ? and...

    A block of mass m1 is placed on an inclined plane with slope angle ? and is connected to a second hanging block m2 by means of an ideal string and pulley as shown. The coefficient of kinetic friction is is ?k . Draw free body diagrams (include all forces, formulas and: a) Find the mass m2 such that m1 moves up the plane at constant velocity once in motion. b) Now find the mass m2 such that m1 moves...

  • Mass m1 14.9 kg is on a horizontal surface. Mass m2 6.73 kg hangs freely on...

    Mass m1 14.9 kg is on a horizontal surface. Mass m2 6.73 kg hangs freely on a rope which is attached to the first mass. The coefficient of static friction between m1 and the horizontal surface is H5 = 0.638, while the coefficient of kinetic friction is μk = 0.144. m1 m2 If the system is set in motion with m1 moving to the right, then what will be the magnitude of the system's acceleration? Consider the pulley to be...

  • A 5 kg block is released from rest on a plane with a rough surface that...

    A 5 kg block is released from rest on a plane with a rough surface that is inclined at 25 degree. The coefficient of kinetic friction between the block and the plate is 0.2 and the coefficient of state friction between the block and the plane is 0.5. Draw a free body diagram of the block. What is the acceleration of the block? For the system below, m1 = 10 kg and m2 = 15 kg. The table and pulley...

  • 3. In the system below, blocks of masses m 10Kg and m2 = 30 Kg are...

    3. In the system below, blocks of masses m 10Kg and m2 = 30 Kg are linked by a massless string through a massless and frictionless pulley The coefficient of mj m2 kinetic friction between the inclined plane and mt is 0.4. 28* a) Draw a free body diagram for each mass individually. Find the magnitude of the acceleration of the two masses. b) プm29-mi Find the tension in the string c) T*133 d) If the string is cut, find...

  • Block 1, of mass m1 = 0.700 kg , is connected over an ideal (massless and...

    Block 1, of mass m1 = 0.700 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of θ = 30.0 ∘ and a coefficient of kinetic friction between block 2 and the plane of μ = 0.300, an acceleration of magnitude a = 0.300 m/s2 is observed for block 2. Find mass of block 2

  • Block 1, of mass m1 = 0.650 kg , is connected over an ideal (massless and...

    Block 1, of mass m1 = 0.650 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of θ = 30.0 ∘ and a coefficient of kinetic friction between block 2 and the plane of μ = 0.250, an acceleration of magnitude a = 0.500 m/s2 is observed for block 2. Find the mass of block 2, m2. Express your answer numerically in kilograms.

  • mi mz 7. (20 points) Consider a block of mass M on a ramp of angle...

    mi mz 7. (20 points) Consider a block of mass M on a ramp of angle 0. The block is attached by massless strings over massless, frictionless pulleys to two objects, m1 and m2, both of mass m where m< M. Assume there is no friction between the block of mass M and the ramp. Draw free-body diagrams for all three masses, keeping vectors consistent between diagrams. Label any vectors that have equal magnitude What is the acceleration of the...

  • Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg ,...

    Two Masses, a Pulley, and an Inclined Plane Block 1, of mass m1 = 0.550kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.500m/s2 is observed for block 2. -Find the mass of block 2, m2.?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT