Question

LTI Systems and Discrete-Time Fourier Series-1 Problem Statement Consider a causal discrete-time LTI system whose input r[n] and output yinl are related by the following equation: Find the Fourier series representation of the output y[n] for (b) ncos()

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
LTI Systems and Discrete-Time Fourier Series-1 Problem Statement Consider a causal discrete-time LTI system whose input...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • This is a fourier series/ transform question Consider an LTI system whose response to the input...

    This is a fourier series/ transform question Consider an LTI system whose response to the input x)lee3ut) is y)12e-2e4Ju) (a) Find the frequency response of this system. (b) Determine the system's impulse response (c) Find the differential equation relating the input and the output of this system.

  • Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equati...

    Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equation yn In--n] a. Find the impulse response of the system (without using any transform). (5 marks) b. Using convolution determine yin, 1f XIn = 1 un.(6 marks Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equation yn In--n] a. Find the impulse response of the system (without using any transform). (5 marks) b. Using convolution...

  • Problem 1 You are given the discrete-time LTI system with impulse response, Calculate the Fourier series coefficients o...

    Problem 1 You are given the discrete-time LTI system with impulse response, Calculate the Fourier series coefficients of the output of this system when the input is x[n] = cos(n+π) Problem 1 You are given the discrete-time LTI system with impulse response, Calculate the Fourier series coefficients of the output of this system when the input is x[n] = cos(n+π)

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • This is about signals and system. Please write it down correctly and take a picture to make it look good. 2. [30 Pts...

    This is about signals and system. Please write it down correctly and take a picture to make it look good. 2. [30 Pts] Consider a causal continuous-time LTI system whose input x(t) and output y(t) are related by the following differential equation: y[n] -y [n - 1] = x[n]. Answer the following questions. (a) Find the frequency response of the system H(e). n, find the Fourier series representation of the output. (b) When x[n] = sin n2cosn], find the Fourier...

  • discrete time signals and systems causal LTI system has the block diagram: (a) find a difference...

    discrete time signals and systems causal LTI system has the block diagram: (a) find a difference equation relating y[n] and x[n] (b) determine if the system is stable // هبه ۸[u] [u]x

  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • Consider an LTI system whose input x[n] and output y[n] are related by the difference equation...

    Consider an LTI system whose input x[n] and output y[n] are related by the difference equation y[n – 1] + 3 y[n] + $y[n + 1] = x[n]. Determine the three possible choices for the impulse response that makes this system 1) causal, 2) two-sided and 3) anti-causal. Then for each case, determine if the system is stable or not. Causality Impulse Response Stability Causal Unstable v two-sided Unstable anti-Causal Unstable y In your answers, enter z(n) for a discrete-time...

  • Consider the discrete-time periodic signal n- 2 (a) Determine the Discrete-Time Fourier Series (DTFS) coefficients ak...

    Consider the discrete-time periodic signal n- 2 (a) Determine the Discrete-Time Fourier Series (DTFS) coefficients ak of X[n]. (b) Suppose that x[n] is the input to a discrete-time LTI system with impulse response hnuln - ]. Determine the Fourier series coefficients of the output yn. Hint: Recall that ejIn s an eigenfunction of an LTI system and that the response of the system to it is H(Q)ejfhn, where H(Q)-? h[n]e-jin

  • Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n...

    Q8) Consider the following causal linear time-invariant (LTI) discrete-time filter with input x[n] and output y[n] described by bx[n-21- ax[n-3 for n 2 0, where a and b are real-valued positive coefficients. A) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? B) What are the initial conditions and their values? Why? C) Draw the block diagram of the filter relating input x[n] and output y[n] D) Derive a formula for the transfer function in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT