Question

Lab 14 - Hardy-Weinberg problems

The frequencies of two alleles in a gene pool are 0.81 (P) and 0.19 (p). Assuming the population is in Hardy-Weinberg equilibrium, what is the frequency of the population that is heterozygous at this gene locus? 

page0001.jpgpage0002.jpgpage0003.jpg

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 9 more requests to produce the answer.

1 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Lab 14 - Hardy-Weinberg problems
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Give the Hardy–Weinberg expected genotypic frequencies for an autosomal locus with three alleles, where the frequencies...

    Give the Hardy–Weinberg expected genotypic frequencies for an autosomal locus with three alleles, where the frequencies of alleles A1, A2, and A3 are defined as p, q, and r, respectively. Set the problem up and show your work. Tay–Sachs disease is an autosomal recessive disorder. Among Ashkenazi Jews, the frequency of Tay–Sachs disease is 1 in 3600. If the Ashkenazi population is mating randomly for the Tay–Sachs gene, what proportion of the population consists of heterozygous carriers of the Tay–Sachs...

  • 2.3 Problem 3 The Hardy-Weinberg equation is useful for predicting the percent of a hu- man...

    2.3 Problem 3 The Hardy-Weinberg equation is useful for predicting the percent of a hu- man population that may be heterozygous carriers of recessive alleles for certain genetic diseases. Phenylketonuria (PKU) is a human metabolic dis- order that results in mental retardation if it is untreated in infancy. In the United States, one out of approximately 10.000 babies is born with the disor- der. Approximately what percent of the population are heterozygous carriers of the recessive PKU allele? If you...

  • reting Data: Hardy-Weinberg Equation 2 of 10 you use the Hardy Weinberg equation to answer questions...

    reting Data: Hardy-Weinberg Equation 2 of 10 you use the Hardy Weinberg equation to answer questions about a hypotheticalcat population Part A A hypothetical population of 500 cats has two wees, Tandt for a gene that codes for tail length (Tis completely dominantot) The table below presents the phenotype of cats with each possible genotype, as well as the number of individuals in the population with each genotype. Assume that this population is in Hardy-Weinberg equilibrium Recall that the Hardy...

  • 1. Suppose a population of organisms is in Hardy–Weinberg equilibrium. In the population, a gene has...

    1. Suppose a population of organisms is in Hardy–Weinberg equilibrium. In the population, a gene has two alleles, B and b. If the frequency of B is 0.72 and the frequency of b is 0.28, what are the expected genotype frequencies of BB, Bb, and bb? Calculate each frequency to two decimal places.

  • BIOL400 Hardy-Weinberg Questions If the frequency of the dominant purple allele is 0.7 and the frequency...

    BIOL400 Hardy-Weinberg Questions If the frequency of the dominant purple allele is 0.7 and the frequency of the recessive white allele is 0.3 what percent of the population will be purple? Assuming Hardy-Weinberg Equilibrium: if the frequency of white flowers is 4%, what are the allele frequencies for the purple and white alleles. If the frequency of the round allele is 0.5 and wrinkled allele is 0.5. What percent will be wrinkled? If the frequency of the sickle cell allele...

  • For two alleles at frequencies p and q in a population at Hardy-Weinberg equilibrium, which of...

    For two alleles at frequencies p and q in a population at Hardy-Weinberg equilibrium, which of the following statements is most likely to be TRUE? A. When p = q, all individuals in the population are heterozygous. B. When p = q, no individuals in the population are heterozygous. C. When p = 1, half of the individuals in the population are heterozygous. D. When p = 0, all individuals in the population are heterozygous E. When p = 0.5,...

  • a. Which of the following two large populations is in Hardy-Weinberg Equilibrium with respect to the...

    a. Which of the following two large populations is in Hardy-Weinberg Equilibrium with respect to the A locus? Genotype frequencies AA Aa aa Population I .430 .481 .089 Population II .640 .320 .040 b. What are the expected equilibrium frequencies for the population that is not in equilibrium? c. How long will it take for the non-equilibrium population to reach equilibrium under conditions of random mating and assuming no selection at this locus?

  • Consider a locus of interest that has two alleles: A and a. A diploid individual carrying...

    Consider a locus of interest that has two alleles: A and a. A diploid individual carrying these alleles can have one of three genotypes: AA, Aa, or aa; a population will consist of some combination of AA, Aa, and aa individuals. The relatively frequency of each of these genotypes makes up the population's structure. Hardy and Weinberg independently figured out that, in the absence of forces that cause evolutionary change, the population structure will 'settle' or default to equilibrium values,...

  • Which of the following statements regarding the Hardy-Weinberg Equation is TRUE? Answers: It can only be u...

    Which of the following statements regarding the Hardy-Weinberg Equation is TRUE? Answers: It can only be used when allele and genotype frequencies remain constant across generations in a population It can only be used when allele and genotype frequencies change across generations in a population It has no assumptions It mathematically shows how recessive alleles in a population decrease over time It reveals when allele frequencies change over time in a population Assuming Hardy-Weinberg Equilibrium, what percentage of individuals in...

  • 4. The Hardy-Weinberg Proof. Consider a gene that has only two alleles R (dominant) and r...

    4. The Hardy-Weinberg Proof. Consider a gene that has only two alleles R (dominant) and r (recessive). The sum total of all R plus all r alleles equals all the alleles at this gene locus, or 100% of all the alleles for that gene. Let p = the percentage or probability of all R alleles in the population. Let q = the percentage or probability of all r alleles in the population. If all R + all r alleles =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT