Question

8. (5 P) A 125 cm length of string has mass 2.00 g and tension force 7.00 N. (a) What is the wave speed for this string? (b)
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Velocity in string is given as, .

v= √{ T/(dm/dl)}; here T=7, dm=2*10^-3, and dl=125*10^-2

So v= sqrt{ (7*125)/2*10-1}

v= 66.14 m/s

Now we noticed that velocity is inversely proportional to square root of mass ,so for mass = 1/4 times of 2 gm that is 0.5 gm , the velocity will be twice.

Add a comment
Know the answer?
Add Answer to:
8. (5 P) A 125 cm length of string has mass 2.00 g and tension force...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 13.18 A string with a length of 125 cm and a mass of 2.15 g is...

    13.18 A string with a length of 125 cm and a mass of 2.15 g is stretched with a tension of 425 N a) What is the speed of waves on the string? b) What is the fundamental frequency of the string? c) What is the wavelength of the third harmonic? d) What is the frequency of the third harmonic?

  • A 240 cm length of string has a mass of 4.3 g. It is stretched with...

    A 240 cm length of string has a mass of 4.3 g. It is stretched with a tension of 8.0 N between fixed supports. (a) What is the wave speed for this string? (b) What is the lowest resonant frequency of this string?

  • A stretched string has a mass per unit length of 4.82 g/cm and a tension of...

    A stretched string has a mass per unit length of 4.82 g/cm and a tension of 12.9 N. A sinusoidal wave on this string has an amplitude of 0.150 mm and a frequency of 168 Hz and is traveling in the negative direction of an x axis. If the wave equation is of the form y(x,t) = ym sin(kx + ωt), what are (a) ym, (b) k, and (c) ω, and (d) the correct choice of sign in front of...

  • A stretched string has a mass per unit length of 3.86 g/cm and a tension of...

    A stretched string has a mass per unit length of 3.86 g/cm and a tension of 25.2 N. A sinusoidal wave on this string has an amplitude of 0.137 mm and a frequency of 156 Hz and is traveling in the negative direction of an x axis. If the wave equation is of the form y(x,t) = ym sin(kx + ωt), what are (a) ym, (b) k, and (c) ω, and (d) the correct choice of sign in front of...

  • A stretched string has a mass per unit length of 3.91 g/cm and a tension of...

    A stretched string has a mass per unit length of 3.91 g/cm and a tension of 16.7 N. A sinusoidal wave on this string has an amplitude of 0.126 mm and a frequency of 78.0 Hz and is traveling in the negative direction of an x axis. If the wave equation is of the form y(x,t) = ym sin(kx + ωt), what are (a) ym, (b) k, and (c) ω, and (d) the correct choice of sign in front of...

  • 8. A string with mass 1 g has a length of 0.5 m, and is held...

    8. A string with mass 1 g has a length of 0.5 m, and is held fixed at either end under a tension of 200 N. a) What is the speed of a wave on the string? b) What is the fundamental wavelength of the string? c) What is the frequency of the third harmonic? d) What is the frequency of the second overtone?

  • A string on the violin has a length of 26 cm and a mass of 0.86...

    A string on the violin has a length of 26 cm and a mass of 0.86 g. The fundamental frequency of the string is 1 kHz. Round all answers to one decimal place. What is the speed of the wave on the string? v=___m/s What is the tension in the string?

  • Suppose on a string of length L=87 cm, tension T=115 N, and mass m the fundamental...

    Suppose on a string of length L=87 cm, tension T=115 N, and mass m the fundamental (1st Harmonic) has a frequency of f1= 500.0 Hz. a) What is the wavelength of the fundamental? b) What is the speed of propagation of the wave in the string? c) What is the mass m of the string? d) In order to tune the string to a new fundamental frequency of 505 Hz, how much does the tension need to change? Will it...

  • A violin string of length 43 cm and mass 1.1 g has a frequency of 495...

    A violin string of length 43 cm and mass 1.1 g has a frequency of 495 Hz when it is vibrating in its fundamental mode. (a) What is the wavelength of the standing wave on the string?   cm (b) What is the tension in the string?   N (c) Where should you place your finger to increase the frequency to 645 Hz?   cm from the fixed end of the string (from the peg of the violin)

  • A violin string of length 38 cm and mass 1.3 g has a frequency of 457...

    A violin string of length 38 cm and mass 1.3 g has a frequency of 457 Hz when it is vibrating in its fundamental mode. (a) What is the wavelength of the standing wave on the string? cm (b) What is the tension in the string? N (c) here should you place your finger to increase the frequency to 607 Hz? cm from the fixed end of the string (from the peg of the violin) eBook

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT