Question

A 0.2 kg object is suspended from a spring with a spring constant of k=10 n/m....

A 0.2 kg object is suspended from a spring with a spring constant of k=10 n/m. The object moves with simple harmonic motion and has an amplitude of 0.08 m . What is the potential energy of the system when the object displacement is 0.08 m ?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

given


spring constant K = 10 N/m


amplitude = A = 0.08 m


mass = 0.2 kg

potetial of a body in SHM = PE = 0.5*K*x^2


x = displacement of the body from the mean position

here x = 0.08 m

PE = 0.5*10*0.08^2 = 0.032 J   <-------answer

Add a comment
Know the answer?
Add Answer to:
A 0.2 kg object is suspended from a spring with a spring constant of k=10 n/m....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An object on a spring with spring constant k = 5 N/m oscillates in simple harmonic...

    An object on a spring with spring constant k = 5 N/m oscillates in simple harmonic motion with amplitude 0.4 m. What is the total energy in this system?

  • A 2-kg object is suspended at rest from a vertical spring (K=196 N/m) attached to the...

    A 2-kg object is suspended at rest from a vertical spring (K=196 N/m) attached to the ceiling. From this equilibrium position, the object is pulled down an additional distance d=3 cm and released from rest. a) Considering the upward direction to be positive, find the amplitude, frequency and phase constant of the simple harmonic motion and write the equation of the motion. b) find the speed of the object at the moment when it is 3 cm above the release...

  • an object of mass "m" is attached to a spring with spring constant "k" and oscillated...

    an object of mass "m" is attached to a spring with spring constant "k" and oscillated with simple harmonic motion motion. the maximum displacement from equillibrium is "A" and the total mechanical energy of the system is "ME." What is the system's potential energy when its kinetic energy is equal to 1/3 ME? (the answer should only have "k" and "A" as veriables, nothing else is allowed)

  • 5. A 2 kg mass connected to a spring with spring constant k = 10 N/m...

    5. A 2 kg mass connected to a spring with spring constant k = 10 N/m oscillates in simple harmonic motion with an amplitude of A = 0.1 m. What is the kinetic energy of the mass when its position is at x = 0.05 m?

  • A 8.5 kg block is suspended from a spring with k = 537 N/m. A 52...

    A 8.5 kg block is suspended from a spring with k = 537 N/m. A 52 g bullet is fired into the block from directly below with a speed of 290 m/s and becomes embedded in the block. (a) Find the amplitude of the resulting simple harmonic motion. (b) What percentage of the original kinetic energy of the bullet is transferred to mechanical energy of the harmonic oscillator?

  • An object with mass 3.5 kg is attached to a spring with spring stiffness constant k...

    An object with mass 3.5 kg is attached to a spring with spring stiffness constant k = 250 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. _______________________________ m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] _______________________________ m/s

  • An object of mass 7.5 kg is attached to a spring constant 2.5 N/m. Starting from...

    An object of mass 7.5 kg is attached to a spring constant 2.5 N/m. Starting from its maximum displacement at rest, the object undergoes simple harmonic oscillations of amplitude 53 cm. after 4.5 s have passed, determine: A) the objects position x=-0.45 m B) the objects velocity v= -0.16 m/s C) the objects acceleration a= 0.15 m/s2 D) the objects kinetic energy K= 0.095 J E) the potential energy store in the spring U=0.26J F) the total energy in the...

  • A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below

    Part A: 10 points each (Questions 1-4) 1. A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below. The amplitude or maximum displacement Xmax is 5m. Calculatea) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x = 2 Cos(45t), where "x" displacement from equilibrium point in meters and "t"...

  • A 3.5 kg object is attached to a horizontal spring of force constant k= 1500 N/m....

    A 3.5 kg object is attached to a horizontal spring of force constant k= 1500 N/m. The spring is stretched 15cm equilibrium and released. Find A. the frequency and the period of the motion, and B. The maximum speed. C. When does the object first reach its equilibrium position? D. What are the potential and kinetic energies when the displacement is one quarter of the amplitude?

  • A spring is suspended vertically from a fixed support. The spring has spring constant k=24 N m −1 k=24 N m−1 . An object...

    A spring is suspended vertically from a fixed support. The spring has spring constant k=24 N m −1 k=24 N m−1 . An object of mass m= 1 4 kg m=14 kg is attached to the bottom of the spring. The subject is subject to damping with damping constant β N m −1 s β N m−1 s . Let y(t) y(t) be the displacement in metres at the end of the spring below its equilibrium position, at time t...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT