Question

A 3.5 kg object is attached to a horizontal spring of force constant k= 1500 N/m....

A 3.5 kg object is attached to a horizontal spring of force constant k= 1500 N/m. The spring is stretched 15cm equilibrium and released. Find A. the frequency and the period of the motion, and B. The maximum speed. C. When does the object first reach its equilibrium position? D. What are the potential and kinetic energies when the displacement is one quarter of the amplitude?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

c. TO.3o 3 sec 3.3 H (0+15) (2n) (3.3) may aFe O 3o3 3.S 3n 2 22 1 6 8

Add a comment
Know the answer?
Add Answer to:
A 3.5 kg object is attached to a horizontal spring of force constant k= 1500 N/m....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1.7 kg object is attached to a horizontal spring of force constant k=3200Nm. The spring...

    A 1.7 kg object is attached to a horizontal spring of force constant k=3200Nm. The spring is stretched 53 cm from the equilibrium position and released. What is its maximum speed?

  • A 4.50-kg object on a frictionless horizontal surface is attached to one end of a horizontal...

    A 4.50-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 840 N/m. The spring is stretched 7.00 cm from equilibrium and released. (a) What is the frequency of the motion? Hz (b) What is the period of the motion? s (c) What is the amplitude of the motion? cm (d) What is the maximum speed of the motion? m/s (e) What is the maximum acceleration of...

  • "A horizontal spring with force constant k = 810 N/m is attached to a wall on...

    "A horizontal spring with force constant k = 810 N/m is attached to a wall on one end. The other end of the spring is attached to a 1.90 kg object that rests upon a frictionless countertop, as shown below." Help with any or all of these would be greatly appreciated, thank you! 3. [0/3 Points] DETAILS PREVIOUS ANSWERS SERCP11 13.4.OP.021. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A horizontal spring with force constant k = 810 N/m is attached...

  • An object with mass 3.5 kg is attached to a spring with spring stiffness constant k...

    An object with mass 3.5 kg is attached to a spring with spring stiffness constant k = 250 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. _______________________________ m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] _______________________________ m/s

  • A 5.00 kg object on a frictionless horizontal surface is attached to one end of a...

    A 5.00 kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant of k = 700 N/m. The spring is stretched 8.00 cm from equilibrium and released. What are (a)the frequency of the motion, (b)the period, (c)the amplitude, (d)the maximum speed, (e)the maximum acceleration?

  • A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...

    A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200m from its equilibrium position...... Would you write out the intermediate steps, too, please? A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m...

  • A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15...

    A 2.5-kg object attached to an ideal spring with a force constant (spring constant) of 15 N/m oscillates on a horizontal, frictionless track. At time t = 0.00 s, the cart is released from rest at position x = 8 cm from the equilibrium position. (a) What is the frequency of the oscillations of the object? (b) Determine the maximum speed of the cart. (c) Find the maximum acceleration of the mass (d) How much total energy does this oscillating...

  • A 300-g object is attached to a spring that has a force constant of 80 N/m....

    A 300-g object is attached to a spring that has a force constant of 80 N/m. The object is pulled 8 cm to the right of equilibrium and released from rest to slide on a horizontal frictionless table. (a) Calculate the maximum speed of the object. An object (m0.300 kg) attached to a spring (k 80 N/m) is pulled A 0.08 m to the right of equilibrium and released from rest. It begins to oscillate on a horizontal, frictionless table....

  • A horizontal spring with force constant k = 730 N/m is attached to a wall on...

    A horizontal spring with force constant k = 730 N/m is attached to a wall on one end. The other end of the spring is attached to a 1.90 kg object that rests upon a frictionless floor, as shown below. mimi 22 x=0 x= x;/2 i (a) The object is displaced to an initial position of <; = 7.90 cm, extending the spring. Calculate PEs, ;, the potential energy (in )) stored in the spring when the object is in...

  • A 0.420-kg object attached to a spring with a force constant of 8.00 N/m vibrates in...

    A 0.420-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 11.6 cm. (Assume the position of the object is at the origin at t0.) (a) Calculate the maximum value of its speed. cm/s (b) Calculate the maximum value of its acceleration cm/s2 (c) Calculate the value of its speed when the object is 9.60 cm from the equilibrium position. (d) Calculate the value of its acceleration when...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT