Question
Block A weighing 750 N and block B weighing 1500 N shown in figure starts from rest. The coefficient of friction between block A and the surface of the inclined plane is 0.2. Determine the velocity of block A when it moves along the plane starting from rest after 3 secs. Assume pulley to be weightless and frictionless
Block A weighing 750 N and block B weighing 1500 N shown in figure starts from rest. The coefficient of friction between block A and the surface of the inclined plane is 0.2. Determine the velocity of the block A when it moves along the plane starting from rest after 3 secs. Assume pulley to be weightless and frictionless. 5. 30°
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Block A weighing 750 N and block B weighing 1500 N shown in figure starts from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block weighing 100 N is placed on an inclined plane of slope angle 30, and...

    A block weighing 100 N is placed on an inclined plane of slope angle 30, and is connected to a second hanging mass of mass m by a cord passing over a small, frictionless pulley. The maximum force of static friction between block and slope is 26.0 N. a. Find the maximum mass m for which the 100 N block is at rest. b. find the minimum mass m for which the 100 N block is at rest. 11,A block...

  • As shown in the figure, a block weighing 150 NN slides down a plane inclined at...

    As shown in the figure, a block weighing 150 NN slides down a plane inclined at an angle of iθ = 35°. The coefficient of friction between the block and the incline is 0.28. As shown in the figure, a block weighing 150 N slides down a plane inclined at an angle of i = 35º. The coefficient of friction between the block and the incline is 0.28. m их e Part A Find the acceleration of the block. Express...

  • A 5 kg block is released from rest on a plane with a rough surface that...

    A 5 kg block is released from rest on a plane with a rough surface that is inclined at 25 degree. The coefficient of kinetic friction between the block and the plate is 0.2 and the coefficient of state friction between the block and the plane is 0.5. Draw a free body diagram of the block. What is the acceleration of the block? For the system below, m1 = 10 kg and m2 = 15 kg. The table and pulley...

  • 3. (20 points) A block m = 5.00 kg is pushed up an inclined plane of angle 60.0°, as shown in Figure 4. There is fricti...

    3. (20 points) A block m = 5.00 kg is pushed up an inclined plane of angle 60.0°, as shown in Figure 4. There is friction between the surface of the block and plane. The coefficient of static friction is his = 0.400, and the coefficient of kinetic friction is pk = 0.300. (a) Find the minimum applied force F such that the block remains on the plane without moving. (b) If F = 60.0 N and the length of...

  • 2. A 10-kg block is released from rest at point A, as shown below. It slides...

    2. A 10-kg block is released from rest at point A, as shown below. It slides along a track that is frictionless except for a "sticky" part between points B and C. After its motion along the track, the block hits a spring with spring constant 1500 N/m. It compresses the spring 0.4 m before momentarily coming to rest. 3.00 m 6.00 m-. We have seen in class that when an object moves along a rough surface, the force of...

  • Questions 1&2 FP 1. A sliding block of mass m 0.25 kg is subject to a...

    Questions 1&2 FP 1. A sliding block of mass m 0.25 kg is subject to a force of magnitude 4 N that makes an angle of ф-30 with the horizontal surface. If the coefficient of kinetic friction between block and surface is 0.5, what is the resulting acceleration of the block along the surface Figure 1: Block on incline. 2. A block of mass m - 5 kg is subject to a force of magnitude 20 N that makes an...

  • (a) As shown in Figure 4(a), a wooden block A with mass ma = 2.4 kg...

    (a) As shown in Figure 4(a), a wooden block A with mass ma = 2.4 kg on a rough inclined plane is connected to a massless spring (k = 160 N/m) fixed to the top of the inclined plane. The angle of the inclined plane is @ = 37º and the coefficient of kinetic friction is uk = 0.30. The other end of block A is connected to block B via a massless cord passing over a pulley P of...

  • A block (block 5) of mass m5 = 2.3 kg hangs from the end of a...

    A block (block 5) of mass m5 = 2.3 kg hangs from the end of a (massless) string which runs over a (massless frictionless) pulley. The other end of the string is connected to another block (block 4) of mass m4 = 6.1 kg on a surface inclined at an angle of θ = 27o above the horizontal. The situation is shown below. a) Assuming there is no friction between block 4 and the inclined plane, find the acceleration (magnitude...

  • 1. The figure shows a box with mass m1 on a frictionless plane inclined at angle...

    1. The figure shows a box with mass m1 on a frictionless plane inclined at angle ?1. The box is connected via a cord of negligible mass to another box with mass m2 on a frictionless plane inclined at angle ?2 (> ?1). The pulley is frictionless and has negligible mass and assumes that the setup is on the surface of the earth. a) Provide free-body force diagram for both boxes. b) What is the acceleration in terms of m1,...

  • A block weighing 14 lb is placed on an incline plane and connected to a 10...

    A block weighing 14 lb is placed on an incline plane and connected to a 10 lb block, as shown in the diagram. The pulley is frictionless. The coefficient of friction between block and plane is 1/7. For what two values of angle ? will the system move with constant velocity? (Hint: You need the identity relating sin? and cos?; find the angles when block is sliding down and up)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT