Question

consider the causal system described by the following difference equation. where the input signal is {xina} and the output si
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
consider the causal system described by the following difference equation. where the input signal is {xina}...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • Problem 4. (20 points): Consider a causal LTI system that is described by the difference equation...

    Problem 4. (20 points): Consider a causal LTI system that is described by the difference equation Find the impulse response sequence h[n] by computing the system function H(S2)

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • Consider a DT system with input x[n] and output y[n] described by the difference equation 4y[n+1]...

    Consider a DT system with input x[n] and output y[n] described by the difference equation 4y[n+1]+y[n-1]=8x[n+1]+8x[n] 73 Consider a DT system with input xin and output yin] described by the difference equation (a) What is the order of this system? (b) Determine the characteristic mode(s) of the system (c) Determine a closed-form expression for the system's impulse response hln]. 73 Consider a DT system with input xin and output yin] described by the difference equation (a) What is the order...

  • A causal LTI system is described by the following difference equation:

    A causal LTI system is described by the following difference equation: y(n) – Ay(n-1) - 2A2y(n − 2) = x(n) – 2x(n-1) + x(n–2), where A is a real constant. Determine the z-domain transfer function, H(z), of the system in terms of A. 

  • 1) A causal discrete-time system is described by the difference equation, y(n) = x(n)+3x(n-1)+ 2x(n-4) a)...

    1) A causal discrete-time system is described by the difference equation, y(n) = x(n)+3x(n-1)+ 2x(n-4) a) What is the transfer function of the system? b) Sketch the impulse response of the system

  • a causal discrete time LTI system is implemented using the difference equation y(n)-0.5y(n-1)=x(n)+x(n-1) where x(n) is...

    a causal discrete time LTI system is implemented using the difference equation y(n)-0.5y(n-1)=x(n)+x(n-1) where x(n) is the input signal and y(n) the output signal. Find and sketch the impulse response of the system

  • A causal discrete-time system is described by the following difference equation: Use Matlab to write a...

    A causal discrete-time system is described by the following difference equation: Use Matlab to write a script to complete the following tasks. Turn in the output created by the Matlab "publish" utility. (a) Compute and plot the impulse response h[n], 0くn 〈 50. Use the function h=imp2(b, a , N ) to find the impulse response, and use the stem ) function to create the plot. (b) Let x[n] be defined by (n - 15)2 0n K 30 x[n] elsewhere...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT