Question

A circular coil of radius 10.5 cm is located in a region of magnetic field where...

A circular coil of radius 10.5 cm is located in a region of magnetic field where

B(t) = (+0.2 T/s)t
and with the magnetic field oriented perpendicular to the plane of the loop. Find the magnutide of the induced EMF in this loop at
t = 11.5 s.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

B(t) = 0.2 t

dB/dt = 0.2 T/s

so inducede emf = NAdB/dt

emf e =   1 *3.14*0.105 * 0.105 * 0.2

emf e = 6.923 *10^-3 OR 0.006923 Volts

Add a comment
Know the answer?
Add Answer to:
A circular coil of radius 10.5 cm is located in a region of magnetic field where...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • If a circular loop of wire of radius 14.9 cm is located in a region where...

    If a circular loop of wire of radius 14.9 cm is located in a region where the spatially uniform magnetic field perpendicular to the plane of the loop is changing at a rate of +1.6 ✕ 10−3 T/s, find the value of the induced EMF in this loop due to this changing magnetic field.

  • A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...

    A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.500 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 167 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 19.0s. 1.Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.

  • A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...

    A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.500 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 167 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 19.0s. 1.Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2.Calculate the magnitude of the current...

  • A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field...

    A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.177 s , the magnetic field strength increases from 53.1 mT to 96.9 mT . Find the magnitude of the average emf avg induced in the coil during this time interval, in millivolts. A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field that is...

  • A circular loop of wire of radius 11.5 cm is placed in a magnetic field directed...

    A circular loop of wire of radius 11.5 cm is placed in a magnetic field directed perpendicular to the plane of the loop as shown in the figure below. If the field decreases at the rate of 0.043 0 T/s in some time interval, find the magnitude of the emf induced in the loop during this interval.

  • 1. (20 pts) A circular coil with a radius of 8.0 cm is dropped from a...

    1. (20 pts) A circular coil with a radius of 8.0 cm is dropped from a location where the magnetic field is 0.2 T into a region where the magnetic field is 1.6 T. The coil takes 0.12 s to fall, has 60 turns and is perpendicular to the magnetic field. The field does not change direction. a. Find the average induced emf in the coil as a result of this action. b. If the induced current flows clockwise as...

  • A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...

    A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 187 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 21.0s. 1. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Answer is: 4.55×10-4 V 2....

  • A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...

    A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 187 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 21.0s. 1. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Answer is: 4.55×10-4 V 2....

  • A 123-turn circular coil of radius 2.35 cm is immersed in a uniform magnetic field that...

    A 123-turn circular coil of radius 2.35 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. During 0.197 s the magnetic field strength increases from 53.5 mT to 95.7 mT. Find the magnitude of the average EMF, in millivolts, that is induced in the coil during this time interval.

  • A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...

    A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.850 T with the plane of the coil perpendicular to the magnetic field as shown. ! The magnetic field decreases to 0.300 T in a time interval of 25.0 ms. What is the average induced emf in the loop during this interval?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT