Question

A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...

A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 187 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 21.0s.

1. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.

Answer is: 4.55×10-4 V

2. Calculate the magnitude of the current induced in the loop while the field is increasing.

3. With the magnetic field held constant at its new value of 0.28 T, calculate the magnitude of the average induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 9.90 s.

Please show all work so I can actually learn how to do these.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic...

    A circular conducting loop of radius 13.0 cm is located in a region of homogeneous magnetic field of magnitude 0.100 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 187 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 21.0s. 1. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Answer is: 4.55×10-4 V 2....

  • A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...

    A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.500 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 167 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 19.0s. 1.Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. 2.Calculate the magnitude of the current...

  • A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic...

    A circular conducting loop of radius 23.0 cm is located in a region of homogeneous magnetic field of magnitude 0.500 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 167 Ω. The magnetic field is now increased at a constant rate by a factor of 2.20 in 19.0s. 1.Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing.

  • A circular loop of radius 15 cm is located in the plane of the paper inside...

    A circular loop of radius 15 cm is located in the plane of the paper inside a homogeneous magnetic field of 0.1 T pointing into the paper. It is connected in series with a resistor of 195 2. The magnetic field is now increased at a constant rate by a factor of 2.4 in 21.0 s. Calculate the magnitude of the induced emf in the loop in V during that time. Submit Answer Tries 0/10 Calculate the current induced in...

  • Tried this once and got all wrong answers, really unsure about how to solve. please help....

    Tried this once and got all wrong answers, really unsure about how to solve. please help. will rate. A circular conducting loop of radius 17.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 235 12. The magnetic field is now increased at a constant rate by a factor of 2.90 in 25.0s. Calculate the magnitude of...

  • The figure below displays a circular loop of conducting wire in a uniform magnetic field pointing into the page

    The figure below displays a circular loop of conducting wire in a uniform magnetic field pointing into the page. The radius of the loop is 13.0 cm and the magnitude of the field is 0.110 T. You grab points A and B and pull them in opposite directions, stretching the loop until its area is nearly zero, taking a time of 0.190 s to do so. What is the magnitude of the average induced emf in the loop (in mv)...

  • A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...

    A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.850 T with the plane of the coil perpendicular to the magnetic field as shown. ! The magnetic field decreases to 0.300 T in a time interval of 25.0 ms. What is the average induced emf in the loop during this interval?

  • A circular conducting loop with radius 5.20 cm is placed in a uniform magnetic field of...

    A circular conducting loop with radius 5.20 cm is placed in a uniform magnetic field of 0.770 T with the plane of the loop perpendicular to the magnetic field, as shown. The loop is rotated 180° about the axis in 0.262 s. What is the average induced emf in the loop during this rotation?

  • A circular conducting loop with radius 3.50 cm is placed in a uniform magnetic field of...

    A circular conducting loop with radius 3.50 cm is placed in a uniform magnetic field of 0.650 T with the plane of the coil perpendicular to the magnetic field as shown. в Axis The magnetic field decreases to 0.440 T in a time interval of 32.0 ms. What is the average induced emf in the loop during this interval? mV

  • If a circular loop of wire of radius 14.9 cm is located in a region where...

    If a circular loop of wire of radius 14.9 cm is located in a region where the spatially uniform magnetic field perpendicular to the plane of the loop is changing at a rate of +1.6 ✕ 10−3 T/s, find the value of the induced EMF in this loop due to this changing magnetic field.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT