Question

A wavelength of 514 nm is used to find an unknown diffraction grating. If the separation...

A wavelength of 514 nm is used to find an unknown diffraction grating. If the separation between the two 1st order principal maxima is 0.976 m on a wall 1.72 m from the grating. How many lines per mm does this unknown diffraction grating have? (Answer in three sig figs).

How many bright fringes can be observed on the screen? (Answer in integer).

Please write clearly and legibly!

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A wavelength of 514 nm is used to find an unknown diffraction grating. If the separation...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A laser beam of wavelength 750 nm shines through a diffraction grating that has 750 lines/mm...

    A laser beam of wavelength 750 nm shines through a diffraction grating that has 750 lines/mm and observed on a screen 1.4 m behind the grating. Part A How many bright fringes can be observed on a screen?

  • For a wavelength of 490 nm, a diffraction grating produces a bright fringe at an angle...

    For a wavelength of 490 nm, a diffraction grating produces a bright fringe at an angle of 26°. For an unknown wavelength, the same grating produces a bright fringe at an angle of 36°. In both cases the bright fringes are of the same order m. What is the unknown wavelength? Bright fringe m (unknown wavelength) Bright fringe m (known wavelength) Central bright fringe (m- 0) Bright fringe m (known wavelength) Bright fringe m (unknown wavelength) Diffraction grating Screen

  • A thin beam of laser light of wavelength 514 nm passes through a diffraction grating having...

    A thin beam of laser light of wavelength 514 nm passes through a diffraction grating having 3952 lines/cm. The resulting pattern is viewed on a distant curved screen that can show all bright fringes up to and including ?90.0? from the central spot. If the experiment were performed with all of the apparatus under water (which has an index of refraction of 1.33), what would be the TOTAL number of bright spots that would show up on the screen?

  • A diffraction grating with 610 lines per mm is illuminated with light of wavelength 520 nm...

    A diffraction grating with 610 lines per mm is illuminated with light of wavelength 520 nm . A very wide viewing screen is 2.0 m behind the grating. Part A What is the distance between the two m=1 fringes? Express your answer in meters. ΔyΔ y = nothing m Request Answer Part B How many bright fringes can be seen on the screen? Express your answer as an integer.

  • A 480 lines/mm diffraction grating is illuminated by light of wavelength 510 nm . How many...

    A 480 lines/mm diffraction grating is illuminated by light of wavelength 510 nm . How many bright fringes are seen on a 4.0-m-wide screen located 2.1 m behind the grating?

  • A diffraction grating with 600 lines/mm is illuminated with light of wavelength 510 nm. A very...

    A diffraction grating with 600 lines/mm is illuminated with light of wavelength 510 nm. A very wide viewing screen is 4.2 m behind the grating. Part A What is the distance between the two m = 1 bright fringes? Express your answer with the appropriate units. Δy = SubmitMy AnswersGive Up Part B How many bright fringes can be seen on the screen? N = SubmitMy AnswersGive Up

  • Light of wavelength 429 nm (in vacuum) is incident on a diffraction grating that has a...

    Light of wavelength 429 nm (in vacuum) is incident on a diffraction grating that has a slit separation of 1.2 × 10-5 m. The distance between the grating and the viewing screen is 0.10 m. A diffraction pattern is produced on the screen that consists of a central bright fringe and higher-order bright fringes (see the drawing). (a) Determine the distance y from the central bright fringe to the second-order bright fringe. (Hint: The diffraction angles are small enough that...

  • Light of wavelength 385 nm (in vacuum) is incident on a diffraction grating that has a...

    Light of wavelength 385 nm (in vacuum) is incident on a diffraction grating that has a slit separation of 1.2 × 10-5 m. The distance between the grating and the viewing screen is 0.18 m. A diffraction pattern is produced on the screen that consists of a central bright fringe and higher-order bright fringes (see the drawing). (a) Determine the distance y from the central bright fringe to the second-order bright fringe. (Hint: The diffraction angles are small enough that...

  • A diffraction grating is made up of slits of width 300 nm with separation 900 nm....

    A diffraction grating is made up of slits of width 300 nm with separation 900 nm. The grating is illuminated by monochromatic plane waves of wavelength λ 600 nm at normal incidence (a) How many maxima are there in the full diffraction pattern? (b) What is the width of a spectral line observed in the first order if the grating has 1000 slits?/

  • A diffraction grating is made up of slits of width = 340 nm with separation =...

    A diffraction grating is made up of slits of width = 340 nm with separation = 790 nm. The grating is illuminated by monchromatic plane waves of wavelength λ = 520 nm at normal incidence. A. How many maxima are there in the full diffraction pattern? B. What is the width of a spectral line observed in the first order if the grating has 500 slits? (deg)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT