Question

A mole of ideal polyatomic gas at 0°C and 1.00 atm is warmed up to expand...

A mole of ideal polyatomic gas at 0°C and 1.00 atm is warmed up to expand isobarically to increase its volume by a factor of six. How much heat (in J) is transferred during the process?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Then , T1 = 273 K

V2/V1 = 6 and T2 = 6*273 = 1638K

Slufion> then T = 273K 3 - 6 Then from Charles Law, Tz = 6x273 = 1638 K Isobaric process the heat tranfered is, @=nCp dt =nc

Add a comment
Know the answer?
Add Answer to:
A mole of ideal polyatomic gas at 0°C and 1.00 atm is warmed up to expand...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • After a free expansion to increase its volume by a factor of six, a mole of...

    After a free expansion to increase its volume by a factor of six, a mole of ideal monatomic gas is compressed back to its original volume isobarically and then warmed up isochorically to its original temperature. What is the heat added to the gas in the final step to restoring its original state? (Use the following as necessary: p0 for the initial pressure and V0 for the initial volume.) (The answer is not 7.5*p_0*v_0)

  • A 1.00 mole sample of an ideal monatomic gas, originally at a pressure of 1.00 atm,...

    A 1.00 mole sample of an ideal monatomic gas, originally at a pressure of 1.00 atm, undergoes, undergoes a three-step process.  (1) It is expanded adiabatically from T1 = 550 K, to T2 = 389 K; (2) it is compressed at constant pressure until the temperature reaches T3; (3) it then returns to its original temperature and pressure by a constant volume process. (a) Plot these processes on a PV diagram. (b) Determine T3.  (c) Calculate the change in internal energy, the...

  • 10.0 L of an ideal diatomic gas at 1.00 atm and 200 K are contained in...

    10.0 L of an ideal diatomic gas at 1.00 atm and 200 K are contained in a cylinder with a piston. The gas first expands isobarically to 30.0 L (step 1). It then contracts adiabatically back to its original volume (step 2), and then cools isochorically back to its original pressure (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...

  • After a free expansion to increase its volume by a factor of eight, a mole of...

    After a free expansion to increase its volume by a factor of eight, a mole of ideal diatomic gas is compressed back to its original volume isobarically and then warmed up isochorically to its original temperature. What is the heat added to the gas in the final step to restoring its original state? (Use the following as necessary: p0 for the initial pressure and V0 for the initial volume.)

  • 1.00-mol sample of N2 gas at 20.09C and 5.00 atm is allowed to expand adiabatically and...

    1.00-mol sample of N2 gas at 20.09C and 5.00 atm is allowed to expand adiabatically and quasi- C. After it reaches a temperature of 20.09C, it is heated at constant volume until its pressure 72..A stati cally until its pressure equals 1.00 atm. It is then heated at constant pressure until its temperature is is again 5.00 (a) Construct a PV diagram showing each process in the cycle. (b) From your graph, determine the work done by the gas during...

  • A 1.00 mole sample of an ideal monatomic gas, originally a pressure of 1.00 atm, undergoing...

    A 1.00 mole sample of an ideal monatomic gas, originally a pressure of 1.00 atm, undergoing a three-step process: • Expands adiabatically from T1 = 588 K to T2 = 300 K • It is compressed at constant pressure until its temperature reaches T3; • Then it returns to its original pressure and temperature using a constant volume process. Calculate cycle efficiency Select one: (Quickly, please :() Calculate cycle efficiency Select one: to. 30.4% b. None of the above options...

  • What volume is occupied by 1.00 mole of an ideal gas at 2.00 atm and a...

    What volume is occupied by 1.00 mole of an ideal gas at 2.00 atm and a temperature of 20.0°C? m3 Submit Request Answer

  • An ideal gas is allowed to expand isothermally until it reaches its final volume. It is...

    An ideal gas is allowed to expand isothermally until it reaches its final volume. It is then heated at constant volume until it reaches its final pressure. The initial state of the gas is P1 = 2.93 atm, V1 = 1.00 L, and Eint 1 = 414 J, and its final state has volume V2 = 2.93 L and Eint 2 = 951 J. 1) Calculate the work done by the gas. Be careful with signs: if the work you...

  • Starting with 2.70 mol of N2 gas (assumed to be ideal) in a cylinder at 1.00...

    Starting with 2.70 mol of N2 gas (assumed to be ideal) in a cylinder at 1.00 atm and 15.0 ∘C, a chemist first heats the gas at constant volume, adding 1.36 × 104 J of heat, then continues heating and allows the gas to expand at constant pressure to twice its original volume. (a) Calculate the final temperature of the gas (b) Calculate the amount of work done by the gas. (c) Calculate the amount of heat added to the...

  • An ideal gas undergoes an adiabatic compression from p = 1.00 atm, V = 1.00 x...

    An ideal gas undergoes an adiabatic compression from p = 1.00 atm, V = 1.00 x 106 L T = 0.00°C to p = 1.00 x 10s atm, V = 1.00 x 103 L. (a) Is the gas monatomic, diatomic, or polyatomic? (b) What is its final temperature? (c) How many moles of gas are present? What is the total translational kinetic energy per mole (d) before and (e) after the compression? (f) What is the ratio of the squares...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT