Question

After a free expansion to increase its volume by a factor of eight, a mole of...

After a free expansion to increase its volume by a factor of eight, a mole of ideal diatomic gas is compressed back to its original volume isobarically and then warmed up isochorically to its original temperature. What is the heat added to the gas in the final step to restoring its original state? (Use the following as necessary: p0 for the initial pressure and V0 for the initial volume.)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
After a free expansion to increase its volume by a factor of eight, a mole of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • After a free expansion to increase its volume by a factor of six, a mole of...

    After a free expansion to increase its volume by a factor of six, a mole of ideal monatomic gas is compressed back to its original volume isobarically and then warmed up isochorically to its original temperature. What is the heat added to the gas in the final step to restoring its original state? (Use the following as necessary: p0 for the initial pressure and V0 for the initial volume.) (The answer is not 7.5*p_0*v_0)

  • (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is...

    (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is 5.30 times its initial volume. What then is the ratio of its pressure to po? (b) The gas is next slowly and adiabatically compressed back to its original volume. The pressure after compression is (5.30)1/3po. Is the gas monatomic, diatomic, or polyatomic? (c) What is the ratio of the average kinetic energy per molecule in this final state to that in the initial state?...

  • (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is...

    (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is 2.30 times its initial volume. What then is the ratio of its pressure to po? (b) The gas is next slowly and adiabatically compressed back to its original volume. The pressure after compression is (2.30)1/320. Is the gas monatomic, diatomic, or polyatomic? (c) What is the ratio of the average kinetic energy per molecule in this final state to that in the initial state?...

  • (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is...

    (a) An ideal gas initially at pressure po undergoes a free expansion until its volume is 4.10 times its initial volume. What then is the ratio of its pressure to po? (b) The gas is next slowly and adiabatically compressed back to its original volume. The pressure after compression is (4.10)1/3po. Is the gas monatomic, diatomic, or polyatomic? (c) What is the ratio of the average kinetic energy per molecule in this final state to that in the initial state?...

  • 10.0 L of an ideal diatomic gas at 1.00 atm and 200 K are contained in...

    10.0 L of an ideal diatomic gas at 1.00 atm and 200 K are contained in a cylinder with a piston. The gas first expands isobarically to 30.0 L (step 1). It then contracts adiabatically back to its original volume (step 2), and then cools isochorically back to its original pressure (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...

  • To practice Problem-Solving Strategy 19.1 Work in Ideal-gas Processes. A cylinder with initial volume V contains...

    To practice Problem-Solving Strategy 19.1 Work in Ideal-gas Processes. A cylinder with initial volume V contains a sample of a gas at pressure p. On one end of the cylinder, a piston is let free to move so that the gas slowly expands in such a way that its pressure is directly proportional to its volume. After the gas reaches the volume 3V and pressure 3p, the piston is pushed in so that the gas is compressed isobarically to its...

  • A cylinder with a piston contains 0.140 mol of nitrogen at 1.88 105 Pa and 325...

    A cylinder with a piston contains 0.140 mol of nitrogen at 1.88 105 Pa and 325 K. The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. PLEASE do B and C and don't don't forget to show all the steps specially for B becuase I don't know how to do...

  • A container is filled with an ideal diatomic gas to a pressure and volume of P1...

    A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in a two-step process that increases the pressure by a factor of two and the volume by a factor of four. Determine the amount of energy transferred to the gas by heat if the first step is carried out at constant volume and the second step at constant pressure. (Use any variable or symbol stated above...

  • In this problem you are to consider an adiabaticexpansion of an ideal diatomic gas, which means...

    In this problem you are to consider an adiabaticexpansion of an ideal diatomic gas, which means that the gas expands with no addition or subtraction of heat. Assume that the gas is initially at pressure p0, volume V0, and temperature T0. In addition, assume that the temperature of the gas is such that you can neglect vibrational degrees of freedom. Thus, the ratio of heat capacities is γ=Cp/CV=7/5. Note that, unless explicitly stated, the variable γ should not appear in...

  • A mole of ideal polyatomic gas at 0°C and 1.00 atm is warmed up to expand...

    A mole of ideal polyatomic gas at 0°C and 1.00 atm is warmed up to expand isobarically to increase its volume by a factor of six. How much heat (in J) is transferred during the process?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT