Question

The figure shows a Carnot cycle. Starting from (a), the gas is compressed at constant temperature to (b), is compressed adiab
0 0
Add a comment Improve this question Transcribed image text
Answer #1

CD = PROT yaitą q diatomic = 5 1-Y wo = -111 8.314* (430-293) 1-104 Degree a breed y = 1+ 25 = 7/5 = 1.4 LD = - won - 126.430

Add a comment
Know the answer?
Add Answer to:
The figure shows a Carnot cycle. Starting from (a), the gas is compressed at constant temperature...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature...

    A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature 25C., pressure of 100KPa and volume of 0.01m3. The system is then compressed isothermally to a volume 0.002m3. From that point, the gas undergoes an adiabatic compression ( with gamma= 1.4), until the volume further reduces to 0.001m3. After that, the system goes an isothermal expansion process to a point where the pressure of the system is 263.8KPa. Then the system continues the cycle...

  • Consider a monoatomic ideal gas undergoing the following cycle: starting point (a), pressure increases at a...

    Consider a monoatomic ideal gas undergoing the following cycle: starting point (a), pressure increases at a constant volume reaching point (b), then the gas expands adiabatically until pressure reaches the initial value (point c), and then the gas is compressed at a constant pressure until the volume reaches the initial value back to point (a). The amount of gas is 1 mole. Monoatomic gas means it has only 3 degrees of freedom and the adiabatic constant gamma is 5/3. Sketch...

  • In an engine, an almost ideal gas is compressed adiabatically (see Note below) to half its...

    In an engine, an almost ideal gas is compressed adiabatically (see Note below) to half its volume. In doing so, 2630 Joules of work is done on the gas. (a) How much heat flows into or out of the gas? (b) What is the change in internal energy of the gas? (c) Does its temperature rise or fall? Note: An adiabatic process is one that occurs without transfer of heat or matter between a thermodynamic system and its surroundings. In...

  • 4. The pressure-volume diagram below shows a special reversible cycle called the Carnot cycle A mole...

    4. The pressure-volume diagram below shows a special reversible cycle called the Carnot cycle A mole of an ideal gas starts off in state 1 in contact with a large thermal reservoir at temperature Th. The gas then undergoes an isothermal expansion from Vi to V2. Upon reaching state 2, the gas container is removed from contact with the thermal reservoir and covered with thermal insulation. Next the gas is allowed to expand adiabatically from V2to Vs. Because the expansion...

  • We have seen that the Carnot cycle can be used to determine the maximum efficiency of...

    We have seen that the Carnot cycle can be used to determine the maximum efficiency of a heat engine. The efficiency is defined as the sum of all of the work during the cycle divided by the amount of heat exchanged during the expansion process: efficiency=?1 +?2 +?3 +?3 /?1 Theoretically, the efficiency of the engine can be determined with the hot and cold temperature of the cycle. efficiency = ?h − ?c/ ?h In this problem, we will calculate...

  • A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram bel...

    A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram below. Process 1 → 2 is at constant volume, process 2-) 3 is adiabatic, and process 3-1 is at a constant pressure of P = 2.00 atm. The value of r for this gas is 1.4 2,7-600K T,-300 K T, 492 K 0 (a) Find the pressure and volume at points 1, 2, and 3. pressure (Pa) volume (m3) point 1 point...

  • 2. Isochoric/Adiabatic/Isobaric Cycle (10 pts) A heat engine using a monatomic gas follows the cycle shown in the PV diagram to the right. Between stages 1 and 2 the gas is at a constant volume,...

    2. Isochoric/Adiabatic/Isobaric Cycle (10 pts) A heat engine using a monatomic gas follows the cycle shown in the PV diagram to the right. Between stages 1 and 2 the gas is at a constant volume, and between 2 and 3 no heat is transferred in or out, between 3 and 1 the pressure is held constant (a) For each stage of this process, calculate in Joules the heat, Q, transferred to the gas, and the work, W, done by the...

  • A Carnot engine operates us ing 1.0 mol e of monoatomic ideal gas as a working...

    A Carnot engine operates us ing 1.0 mol e of monoatomic ideal gas as a working s ubstance. In t he first step, the gas is place d in thermal contact with a heat reservoir and expands isothermally to 3 .0 times its initial volume. (a) If the internal energy o f the gas after this step is 6.25 k J , calculate the temperature of the heat reservoir ( T h ) . (b) C alculate the heat absorbed...

  • 2. 0.5 moles of an ideal gas is initially at T, = 300 K in a...

    2. 0.5 moles of an ideal gas is initially at T, = 300 K in a volume Va=0.8 L. This gas has a y value of 9/7. It is taken around the cycle as shown: (1) expanded isothermally to volume Vo = 1.6 L, from a to b. (2) expanded adiabatically to T. = 275 K, from b to c. 0.8L (3) compressed at constant pressure to T, = 235.74 K, from c to d. (4) compressed adiabatically back to...

  • Consider a Carnot cycle in which the working substance is 0.10 mol of perfect gas molecules,...

    Consider a Carnot cycle in which the working substance is 0.10 mol of perfect gas molecules, the temperature of the hot source is 373 K, that of the cold sink is 273 K; the initial volume of gas is 1.00 dm', which doubles over the course of the first isothermal stage. For the reversible adiabatic stages it may be assumed that VT3/2 = constant. a) calculate the volume of the gas VB and Vc); b) calculate the volume of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT