Question

2. 0.5 moles of an ideal gas is initially at T, = 300 K in a volume Va=0.8 L. This gas has a y value of 9/7. It is taken arou

0 0
Add a comment Improve this question Transcribed image text
Answer #1

e net work done -103.984 -43.75R+ 19.69RT 112.9558 What -15.50SR احیا) effiäency= Heat given (abserbed] - 15:5650S 11 19.69 R

Add a comment
Know the answer?
Add Answer to:
2. 0.5 moles of an ideal gas is initially at T, = 300 K in a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal gas with ?=1.4 occupies 5.5L at 300 K and 150kPa pressure and is compressed...

    An ideal gas with ?=1.4 occupies 5.5L at 300 K and 150kPa pressure and is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to state A. A)Find the net work done on the gas B) Find the minimum volume reached.

  • 102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It...

    102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It is (1) heated at constant pressure to 655 K, (2) then allowed to cool at constant volume until its temperature returns to its initial value, (3) then compressed isothermally to its initial state. Find: a. the net energy transferred as heat to the gas (excluding the energy transferred as heat out of the gas). b. the net work done by the gas for the...

  • An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 100 kPa pressure and...

    An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 100 kPa pressure and is heated at constant volume until its pressure has doubled. It's then compressed adiabatically until its volume is one-fourth its original value, then cooled at constant volume to 300 K , and finally allowed to expand isothermally to its original state. Find the net work done on the gas in Joules.

  • A 30-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa...

    A 30-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa . The gas is compressed adiabatically until its pressure triples, then cooled at constant volume back to 250 K, and finally allowed to expand isothermally to its original state. How much work is done on the gas? What is the minimum volume reached?

  • Five moles of an ideal gas expands isothermally at 300 K from an initial volume of...

    Five moles of an ideal gas expands isothermally at 300 K from an initial volume of 100 L to a final volume of 500 L. Calculate: (a) the maximum work the gas can deliver, (b) the heat accompanying the process, (c) AS for the gas.

  • n = 4.41 mol of Hydrogen gas is initially at T = 308 K temperature and...

    n = 4.41 mol of Hydrogen gas is initially at T = 308 K temperature and pi = 1.77×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 6.63×105 Pa. A.)What is the volume of the gas at the end of the compression process? B.) How much work did the external force perform? C.)How much heat did the gas emit? D.) How much entropy did the gas emit? E.) What would be the...

  • n = 3.62 mol of Hydrogen gas is initially at T = 338.0 K temperature and...

    n = 3.62 mol of Hydrogen gas is initially at T = 338.0 K temperature and pi = 1.77×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.96×105 Pa. a. What is the volume of the gas at the end of the compression process? b. How much work did the external force perform? c. How much heat did the gas emit? d. How much entropy did the gas emit? e. What would...

  • The figure shows a Carnot cycle. Starting from (a), the gas is compressed at constant temperature...

    The figure shows a Carnot cycle. Starting from (a), the gas is compressed at constant temperature to (b), is compressed adiabatically to (c), is expanded at constant temperature to (d), and expanded adiabatically back to (a). The engine works between the temperatures Tc = 293 K and Th=430 K. The engine starts at (a) with a volume of 2.7 Land atmospheric pressure, 1.01 X 105 Pa. Assume this is a diatomic ideal gas (air, to a good approximation). What is...

  • Five moles of an ideal gas expands isothermally at 300 K from an initial volume of...

    Five moles of an ideal gas expands isothermally at 300 K from an initial volume of 100 L to a final volume of 500 L. Calculate: (a) the maximum work the gas can deliver, (b) the heat accompanying the process, (c) ∆S for the gas. (Please explain why did you use the equation, what conditions did you see from the question, etc)

  • A 1.00 mole sample of an ideal monatomic gas, originally at a pressure of 1.00 atm,...

    A 1.00 mole sample of an ideal monatomic gas, originally at a pressure of 1.00 atm, undergoes, undergoes a three-step process.  (1) It is expanded adiabatically from T1 = 550 K, to T2 = 389 K; (2) it is compressed at constant pressure until the temperature reaches T3; (3) it then returns to its original temperature and pressure by a constant volume process. (a) Plot these processes on a PV diagram. (b) Determine T3.  (c) Calculate the change in internal energy, the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT