Question

A 30-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa...

A 30-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa . The gas is compressed adiabatically until its pressure triples, then cooled at constant volume back to 250 K, and finally allowed to expand isothermally to its original state. How much work is done on the gas? What is the minimum volume reached?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 30-L sample of an ideal gas with γ=1.67 is at 250 K and 50 kPa...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 100 kPa pressure and...

    An ideal gas with γ=1.4 occupies 5.0 L at 300 K and 100 kPa pressure and is heated at constant volume until its pressure has doubled. It's then compressed adiabatically until its volume is one-fourth its original value, then cooled at constant volume to 300 K , and finally allowed to expand isothermally to its original state. Find the net work done on the gas in Joules.

  • Part A ConstantsI Periodic Table An ideal gas with γ = 1.4 occupies 6.0 L at...

    Part A ConstantsI Periodic Table An ideal gas with γ = 1.4 occupies 6.0 L at 300 K and 150 kPa pressure and is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to state A. Find the net work done on the gas Express your answer using two significant figures. 0図? W- Submit Request Answer Part B Find the minimum volume reached Express...

  • An ideal gas with ?=1.4 occupies 5.5L at 300 K and 150kPa pressure and is compressed...

    An ideal gas with ?=1.4 occupies 5.5L at 300 K and 150kPa pressure and is compressed adiabatically until its volume is 2.0 L. It's then cooled at constant pressure until it reaches 300 K, then allowed to expand isothermally back to state A. A)Find the net work done on the gas B) Find the minimum volume reached.

  • A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K...

    A sample of a monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A in the figure below). It is warmed at constant volume to 3.00 atm (point B). Then it is allowed to expand isothermally to 1.00 atm (point C) and at last compressed isobarically to its original state. a. Find Q, W, and ΔEint for each of the processes. Q (kJ) W (kJ) Eint (kJ) A → B B → C C → A...

  • n = 4.04 mol of Hydrogen gas is initially at T = 370.0 K temperature and...

    n = 4.04 mol of Hydrogen gas is initially at T = 370.0 K temperature and pi = 2.65×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 7.11×105 Pa. What is the volume of the gas at the end of the compression process?   How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the...

  • n = 3.36 mol of Hydrogen gas is initially at T = 348 K temperature and...

    n = 3.36 mol of Hydrogen gas is initially at T = 348 K temperature and pi = 2.98×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.10×105 Pa. Volume of the gas at the end of the compression process is1.20×10-2 m^3. How much work did the external force perform? How much heat did the gas emit? How much entropy did the gas emit? What would be the temperature of the gas,...

  • n = 4.41 mol of Hydrogen gas is initially at T = 308 K temperature and...

    n = 4.41 mol of Hydrogen gas is initially at T = 308 K temperature and pi = 1.77×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 6.63×105 Pa. A.)What is the volume of the gas at the end of the compression process? B.) How much work did the external force perform? C.)How much heat did the gas emit? D.) How much entropy did the gas emit? E.) What would be the...

  • n = 3.62 mol of Hydrogen gas is initially at T = 338.0 K temperature and...

    n = 3.62 mol of Hydrogen gas is initially at T = 338.0 K temperature and pi = 1.77×105 Pa pressure. The gas is then reversibly and isothermally compressed until its pressure reaches pf = 8.96×105 Pa. a. What is the volume of the gas at the end of the compression process? b. How much work did the external force perform? c. How much heat did the gas emit? d. How much entropy did the gas emit? e. What would...

  • A 650,000 mL volume of monatomic ideal gas inside of a heat engine starts at room...

    A 650,000 mL volume of monatomic ideal gas inside of a heat engine starts at room temperature (20.0o C) and pressure (101.325 kPa).  At first, the volume is compressed without changing the temperature.  Then, 3.7 kJ of heat is added while the volume remains constant.  Finally, the volume is allowed to expand adiabatically back to its starting conditions. Assume all processes are reversible and ideal. Prove that the entropy and efficiency for the three-stroke heat engine are consistent with the second law of...

  • An ideal gas, initially at a pressure of 9.1 atm and a temperature of 311 K,...

    An ideal gas, initially at a pressure of 9.1 atm and a temperature of 311 K, is allowed to expand adiabatically until its volume doubles.What is the gas’s final pressure, in atmospheres, if the gas is diatomic?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT