Question

My Determine whether the given matrix is diagonalizable; if so, find a matrix P and a diagonal matrix D such that A - PDP1. (If the matrix is not dlagonalizable, enter DNE in any cell.) T o 1 0 A-1 20 L-1 1 1 [PD] Additional Materials Tutorial Show My Work (optiena) Submit Answer Save Progress Practice Another Version 25

linear algebra

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution :

0 Diagonalize-1 2 0

\mathrm{Steps\:}:

\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}

\mathrm{A\:matrix\:}A\mathrm{\:can\:be\:diagonalized\:if\:there\:exists\:an\:invertible\:matrix\:}P\mathrm{\:and\:diagonal\:matrix\:}D

\mathrm{\:such\:that\:}A=PDP^{-1}

\mathrm{Eigenvalues\:for\:}\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}:\quad

\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}

\mathrm{Eigenvalues\:of\:}A\mathrm{\:are\:the\:roots\:of\:the\:characteristic\:equ.\:}\det \left(A-\lambda \:I\right)=0

\det \left(\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}-\lambda \begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}\right)

=\det \left(\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}-\begin{pmatrix}\lambda &0&0\\ 0&\lambda&0\\ 0&0&\lambda\end{pmatrix}\right)

=\det \begin{pmatrix}-\lambda &1&0\\ -1&2-\lambda&0\\ -1&1&1-\lambda\end{pmatrix}

\det \begin{pmatrix}-\lambda &1&0\\ -1&2-\lambda&0\\ -1&1&1-\lambda\end{pmatrix}

=-\lambda* \det \begin{pmatrix}2-\lambda&0\\ 1&1-\lambda\end{pmatrix}-1*\det \begin{pmatrix}-1&0\\ -1&1-\lambda \end{pmatrix}+0*\det \begin{pmatrix}-1&2-\lambda \\ -1&1\end{pmatrix}

=-\lambda* (\left(2-\lambda\right)\left(1-\lambda\right)-0*1)-1*(\left(-1\right)\left(1-\lambda\right)-0* \left(-1\right))+0*(\left(-1\right)*1-\left(2-\lambda\right)\left(-1\right))

=-\lambda* (\left(-\lambda+2\right)\left(-\lambda+1\right))-1*(-\left(-\lambda+1\right))-0* \left(-1\right))+0*(-1+2-\lambda)

=-\lambda* (\lambda^{2}-1\lambda-2\lambda+2*1)-1*(\lambda-1)+0*(-1+2-\lambda)

=-\lambda* (\lambda^2-3\lambda+2)-1*(\lambda-1)

=-\lambda ^3+3\lambda^2-2\lambda-\lambda+1

=-\lambda ^3+3\lambda^2-3\lambda+1

\mathrm{Solve\:}\:-\lambda ^3+3\lambda ^2-3\lambda +1=0:

-\lambda ^3+3\lambda ^2-3\lambda +1=0

-(\lambda ^3-3\lambda^2+3\lambda-1)=0

\mathrm{Apply\:cube\:of\:difference\:rule:\:}a^3-3a^2b+3ab^2-b^3=\left(a-b\right)^3

-(\left(\lambda -1\right)\left(\lambda-1\right)\left(\lambda-1\right))=0

-\left(\lambda -1\right)^3=0

\mathrm{Using\:the\:Zero\:Factor\:Principle:}

\mathrm{Solve\:}\:\lambda -1=0:

\lambda -1=0

\lambda =1

\mathrm{The\:final\:solution\:to\:the\:equation\:is:}

\lambda =1

\mathrm{The\:eigenvalues\:are:}

=1

\mathrm{Now,\:the\:eigenvectors\:for\:}\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}:

\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}

\mathrm{Solve\:}\:\left(A-\lambda \:I\right):\:\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}-1\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}

\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}-1* \begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}

=\begin{pmatrix}0&1&0\\ -1&2&0\\ -1&1&1\end{pmatrix}-\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix}

=\begin{pmatrix}0-1&1-0&0-0\\ \left(-1\right)-0&2-1&0-0\\ \left(-1\right)-0&1-0&1-1\end{pmatrix}

\mathrm{Simplify\:each\:element}

=\begin{pmatrix}-1&1&0\\ -1&1&0\\ -1&1&0\end{pmatrix}

\mathrm{Reduce\:}\begin{pmatrix}-1&1&0\\ -1&1&0\\ -1&1&0\end{pmatrix}:\quad

\begin{pmatrix}-1&1&0\\ -1&1&0\\ -1&1&0\end{pmatrix}

\mathrm{Cancel\:leading\:coefficient\:in\:row\:}\:R_2\:\mathrm{\:by\:performing}\:R_2\:\leftarrow \:R_2-1*R_1

=\begin{pmatrix}-1&1&0\\ 0&0&0\\ -1&1&0\end{pmatrix}

\mathrm{Cancel\:leading\:coefficient\:in\:row\:}\:R_3\:\mathrm{\:by\:performing}\:R_3\:\leftarrow \:R_3-1*R_1

=\begin{pmatrix}-1&1&0\\ 0&0&0\\ 0&0&0\end{pmatrix}

\mathrm{Multiply\:matrix\:row\:by\:constant:}\:R_1\:\leftarrow \:-1*R_1

=\begin{pmatrix}1&-1&0\\ 0&0&0\\ 0&0&0\end{pmatrix}

\mathrm{The\:system\:associated\:with\:the\:eigenvalue\:}\lambda =1

0 0 0/ z

\mathrm{This\:reduces\:to\:the\:equation}

x-y=0

\mathrm{Note\:that\:}z\mathrm{\:did\:not\:show\:up\:in\:the\:equations\:which\:means\:}\begin{pmatrix}1&-1&0\\ 0&0&0\\ 0&0&0\end{pmatrix}\begin{pmatrix}0\\ 0\\ z\end{pmatrix}=\begin{pmatrix}0\\ 0\\ 0\end{pmatrix}\mathrm{\:regardless\:of\:the\:value\:of\:}z

\mathrm{Therefore,\:the\:eigenvectors\:associated\:with\:the\:eigenvalue\:}\lambda =1

\begin{pmatrix}0\\ 0\\ 1\end{pmatrix}

\mathrm{Isolate}

x=y

\mathrm{Plug\:into\:}\begin{pmatrix}x\\ y\\ z\end{pmatrix}

v=\begin{pmatrix}y\\ y\\ 0\end{pmatrix}\space\space\:y\ne \:0

\mathrm{Let\:}y=1

\begin{pmatrix}1\\ 1\\ 0\end{pmatrix}

\mathrm{All\:eigenvectors\:for\:the\:eigenvalue\:}\lambda =1

\begin{pmatrix}0\\ 0\\ 1\end{pmatrix},\:\begin{pmatrix}1\\ 1\\ 0\end{pmatrix}

\mathrm{To\:allow\:diagonalization,\:the\:number\:of\:Eigenvectors\:must\:equal\:the\:matrix\:dimensions.}

\mathrm{There\:are\:}2\mathrm{\:Eigenvectors\:which\:is\:less\:then\:}3\mathrm{\:and\:therefore\:the\:matix\:cannot\:be\:diagonalized}

=\mathrm{Not\:diagonizable}

Add a comment
Know the answer?
Add Answer to:
linear algebra My Determine whether the given matrix is diagonalizable; if so, find a matrix P...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT