Question

Q4) Determine the required mass of block A so that when it is released from rest it moves the 5-kg block B 0.75 m up along the inclined plane, where the coefficient of friction is 0.15, in 2 second. Neglect the mass of the pulleys and cords. 60°

0 0
Add a comment Improve this question Transcribed image text
Answer #1

We Kno tw 0.375-a 1 a k pesition СП 01 St SA 2 Se f (sa an- 0315sine 的0 -m a A rA3

Add a comment
Know the answer?
Add Answer to:
Q4) Determine the required mass of block A so that when it is released from rest...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two identical blocks are released from rest. Neglecting the mass of the pulleys and knowing that...

    Two identical blocks are released from rest. Neglecting the mass of the pulleys and knowing that the coefficient of friction is 0.20, determine by the principle of work and energy: (a) The speed of Block B after having descended 1 m, in the direction of the inclined plane. (b) The tension in cable B. (c) The acceleration of block B. 2 kg 2 kg | 72° 68 2 kg 2 kg | 72° 68

  • 7, A block of mass 4.00 kg is released from rest near the top of an...

    7, A block of mass 4.00 kg is released from rest near the top of an inclined plane, where θ 30.00. It slides with friction down the incline and then contacts and compresses an ideal spring that is rigidly mounted parallel to the incline near the bottom. The spring has a force constant of 500.0 N/m and it compresses a maximum distance x. If d = 200 meters and 0.300 meter, what is the coefficient of friction between the block...

  • Determine the velocity of the 60-1b block A if the two blocks are released from rest...

    Determine the velocity of the 60-1b block A if the two blocks are released from rest and the 40-16 block B moves 2 ft up the incline. The coefficient of kinetic friction between both blocks and the inclined planes is 0.10. B 60° 30°

  • rni 0 A block of mass m1- 21.9 kg is at rest on a plane inclined...

    rni 0 A block of mass m1- 21.9 kg is at rest on a plane inclined at 28.0 above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2-24.1 kg, as shown in the figure. The coefficient kinetic friction between block 1 and the inclined plane is μ,-0.15. If the blocks are released from rest, what is the acceleration of m2? what is a tension force T on the rope?

  • Question 3. A block A, having a mass of 20-kg, is released from rest and slides...

    Question 3. A block A, having a mass of 20-kg, is released from rest and slides down an incline with coeffici an incline with coefficient of static d kinetic friction of 0.25 and 0.10, respectively. When it reaches the bottom of the ramp, it slides ally onto the surface of a 10-kg cart for which the coefficient of static and kinetic friction between Question 3. A block A, having a mass of 20-kg, is released from rest and slides down...

  • Problem 3: Determine the acceleration of block B, acceleration of block A, and the tension in...

    Problem 3: Determine the acceleration of block B, acceleration of block A, and the tension in the cable if the system is released from rest. The coefficient of static and kinetic friction between block A and the wedge surface are js = 0.2 and uk = 0.15, respectively. Neglect masses of the pulleys and associated friction in the pulleys. Consider ma = 15 kg and mp = 8 kg. FBDs and kinetic diagrams for blocks A and B is mandatory....

  • The length of the A 2 kg block is released from rest at the top of...

    The length of the A 2 kg block is released from rest at the top of a rough 40° inclined plane incline is 10 m. As the block slides down the incline, its acceleration is 3.0 m/s incline 1s 10 m. incline. Draw the free body diagram. a) Determine the magnitude of the force of friction acting on the bloc b) W hat is the speed of the block when it reaches the bottom of the inclined plane?

  • Problem 2: Determine the velocity of the 60-lb block A if the two blocks are released...

    Problem 2: Determine the velocity of the 60-lb block A if the two blocks are released from rest and the 40-lb block B moves 2 ft up the incline. The coefficient of kinetic friction between both blocks and the inclined planes is 0.10. 30r

  • Block B is released from rest. Determine the velocity of B and A once B has...

    Block B is released from rest. Determine the velocity of B and A once B has traveled 1.5 m. Blocks A and B have masses of 5 kg and 10 kg, respectively. The mass of the pulleys can be ignored. The coefficients of friction between A and the surface are 0.1 and 0.2. В

  • A 5 kg block is released from rest on a plane with a rough surface that...

    A 5 kg block is released from rest on a plane with a rough surface that is inclined at 25 degree. The coefficient of kinetic friction between the block and the plate is 0.2 and the coefficient of state friction between the block and the plane is 0.5. Draw a free body diagram of the block. What is the acceleration of the block? For the system below, m1 = 10 kg and m2 = 15 kg. The table and pulley...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT