Question

A RCL circuit has a 1.68 uF capacitor and a 11.14 mH inductor. The total impedance...

A RCL circuit has a 1.68 uF capacitor and a 11.14 mH inductor. The total impedance of the circuit is 6 ohms at a frequency of 1.2 kHz.

A) What is the resistance fo the resistor?

B) What is the phase angle between the current and voltage?

C) What is the resonance frequency of this circuit?

D) What will the toal impedance be at the resonance frequency?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A RCL circuit has a 1.68 uF capacitor and a 11.14 mH inductor. The total impedance...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An inductor (L = 365 mH), a capacitor (C = 4.43 uF), and a resistor (R...

    An inductor (L = 365 mH), a capacitor (C = 4.43 uF), and a resistor (R = 6052) are connected in series. A 50.0 Hz AC source produces a peak current of 250 mA in the circuit. (a) Calculate the required peak voltage AV max (b) Determine the phase angle by which the current leads or lags the applied voltage. Step 1 The total impedance depends on the frequency and the resistance of the circuit. The voltage amplitude is in...

  • An LC circuit consists of a 3.10 mH inductor and a 5.07 uF capacitor. (a) Find...

    An LC circuit consists of a 3.10 mH inductor and a 5.07 uF capacitor. (a) Find its impedance at 60.8 Hz. (b) Find its impedance at 11.6 kHz. Ω (C) Now a 36.6 12 resistor is added in series with the inductor and capacitor. Find the impedance of this RLC circuit at 60.8 Hz and 11.6 kHz. At 60.8 Hz At 11.6 kHz (d) Compare the values of Z in parts (a) and (b) with those found in part (c),...

  • A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50...

    A series AC circuit contains a resistor, an inductor of 250 mH, a capacitor of 4.50 uF, and a source with AV = 240 V operating at 50.0 Hz. The max maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance. The inductive reactance depends on the value of the inductance and the frequency of the source. Q (b) Calculate the capacitive reactance. (c) Calculate the impedance. kn (d) Calculate the resistance in the circuit. kn. (e)...

  • A series RCL circuit contains a 148 ohm resistor, a 1.50 uF capacitor, and a 35.7...

    A series RCL circuit contains a 148 ohm resistor, a 1.50 uF capacitor, and a 35.7 mH inductor. The generator has a frequency of 512 Hz and an rms voltage of 35 V. Determine the peak current in the circuit.

  • A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20...

    A series AC circuit contains a resistor, an inductor of 220 mH, a capacitor of 4.20 ur, and a source with ΔⅤmax-240 V operating at 50.0 Hz. The maximum current in the circuit is 170 mA. (a) Calculate the inductive reactance 69.11 (b) Calculate the capacitive reactance 757.88 (c) Calculate the impedance 141 (d) Calculate the resistance in the circuit. 6.887 The impedance is a function of the resistance and the impedances of the inductor and capacitor. kΩ (e) Calculate...

  • F capacitor. It is driven istor, a 50 mH inductor, and a 25 4. A series...

    F capacitor. It is driven istor, a 50 mH inductor, and a 25 4. A series RCL circuit consists of a 60 S2 resistor, a 50 ml in quency 400 rad/s. by an alternating source with rms voltage 120 V and angular frequency 400 rady (a) What is the inductive reactance of the circuit? (b) What is the capacitive reactance of the circuit? (c) What is the impedance of the circuit? (d) What is the phase difference between the voltage...

  • a. b. C. A 250-ohm resistor, a 0.450 H inductor, and a 6.45 uF capacitor are...

    a. b. C. A 250-ohm resistor, a 0.450 H inductor, and a 6.45 uF capacitor are connected in series across an emf with a 36.0 volt amplitude and an angular frequency of 260 rad/s. What is the impedance? What is the current amplitude? What is the phase angle between the voltage and current? Does the voltage lag or lead? What are the voltage amplitudes across the resistor, inductor and capacitor individually? What is the power? f. What is the resonant...

  • #3. A 250-ohm resistor, a 0.450 H inductor, and a 6.45 uF capacitor are connected in...

    #3. A 250-ohm resistor, a 0.450 H inductor, and a 6.45 uF capacitor are connected in series across an emf with a 36.0 volt amplitude and an angular frequency of 260 rad/s. a. What is the impedance? b. What is the current amplitude? c. What is the phase angle between the voltage and current? Does the voltage lag or lead? d. What are the voltage amplitudes across the resistor, inductor and capacitor individually? e. What is the power? f. What...

  • A resistor, 50.0-mH inductor, and 100.0-uF capacitor are connected in series with a 50-Hz voltage source....

    A resistor, 50.0-mH inductor, and 100.0-uF capacitor are connected in series with a 50-Hz voltage source. The maximum voltage through the circuit is 240 V. Calculate the power across the LCR circuit, if phase angle between the current and voltage is 60degrees.

  • A series AC circuit contains a resistor, an Inductor of 220 mH, a capacitor of 4.80...

    A series AC circuit contains a resistor, an Inductor of 220 mH, a capacitor of 4.80 f, and a generator with Av max - 240 V operating at 50.0 Hz. The maximum current in the circuit is 130 mA (a) Calculate the inductive reactance (b) Calculate the capacitive reactance (c) Calculate the impedance kn (d) Calculate the resistance in the circuit kn (e) Calculate the phase angle between the current and the generator voltage

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT