Question

What is the answer of following question?

Consider the cascade of a LTI system witlh impulse response h()-u() ith the LTI system whose impulse response is h2 () ao(t) where δ(1) φ . Find the overall impulse response.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
What is the answer of following question? Consider the cascade of a LTI system witlh impulse...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider the cascade of LTI discrete-time systems shown in Figure P2.37. LTI System 1 hi[n], H...

    Consider the cascade of LTI discrete-time systems shown in Figure P2.37. LTI System 1 hi[n], H (el) LTI System 2 h2[n], H2(eje) Figure P2.37 The first system is described by the frequency response Hi(j =c-joo < 0.25% 11 0.25% < and the second system is described by <A hain) = 2 Sin(0.57) (a) Determine an equation that defines the frequency response, H(e)®), of the overall system over the range -- SUSA. (b) Sketch the magnitude. He"), and the phase, ZH(e)),...

  • Consider a LTI system with impulse response h[n] = u[n]*a^n, where |a| < 1. a) Determine...

    Consider a LTI system with impulse response h[n] = u[n]*a^n, where |a| < 1. a) Determine the frequency response of the system. b) Find the magnitude response and the phase response, given a = 1/2. No plots. c) Consider a LTI system whose impulse response h1[n] is a time-shifted version of h[n], i.e., h1[n] = h[n − n0]. Compute the frequency response H1(e^(jΩ)), and represent H1(e^(jΩ)) in terms of H(e^(jΩ)).

  • LTI Systems. Consider two LTI subsystems that are connected in series

    (a) LTI Systems. Consider two LTI subsystems that are connected in series, where system Tl has step response s1(t)=u(t-1)-u(t-5) and system T2 has impulse response h2t = e-3tu(t). Find the overall impulse response h(t). Hint: you will need to find h1(t) first (b)Fourier Series. The input signal r(t) and impulse response h(t) of an LTI system are as follows:x(t) = sin(2t)cos(t)-ej3t +2 and h(t) = sin(2t)/t Use the Fourier Series method to find the output y(t) (c)Parseval's Identity and Theorem. Consider the system in the...

  • 3. Consider the following system LTI LTI System 2 h2ln] System 1 x [n] hiln) wIn]...

    3. Consider the following system LTI LTI System 2 h2ln] System 1 x [n] hiln) wIn] yIn] with h(n) (0.2)" un),h(n) is the impulse response of 2y(n)-4y(n-1) 2w(n), and x(n) (0.6"u(n). (a) Determine h2(n) (b) Determine the overall impulse response hn) (c) Determine w(n) e Demine e gu x n ) (a) velw mine hrCn) (b) Peke a jin

  • 2.7.5 The impulse response of a continuous-time LTI system is given by (a) What is the...

    2.7.5 The impulse response of a continuous-time LTI system is given by (a) What is the frequency response H (w) of this system? (b) Find and sketch |H(w) (c) Is this a lowpass, bandpass, or highpass filter, or none of those? 2.7.6 The impulse response of a continuous-time LTI system is given by h(t) = δ(t-2) (This is a delay of 2.) (a) What is the frequency response H (w) of this system? (b) Find and sketch the frequency response...

  • Consider the LTI system with input ??(??) = ?? ?????(??) and the impulse response ?(??) =...

    Consider the LTI system with input ??(??) = ?? ?????(??) and the impulse response ?(??) = ?? ?2????(??). A. (3 points) Determine ??(??) and ??(??) and the ROCs B. (3 points) Using the convolutional property of the Laplace transform, determine ??(??), the Laplace transform of the output, ??(??) C. (3 points) From the answer of part B, find ??(??) 9 points) Consider the LTI system with input x(t)eu(t) and the impulse response h(t)-e-2u(t) A. 3 points) Determine X(s) and H(s)...

  • Problem 3) Two discrete-time LTI systems are connected in cascade. The first system is defined by...

    Problem 3) Two discrete-time LTI systems are connected in cascade. The first system is defined by its frequency response: H(e-1+and the second system is (a) Determine the frequency response for the overall cascade system. Simplify your (c) Write down the difference equation that relates the output y[n] to the input x[n]. defined by its impulse response: hln]-n-n-+n-2]-n-3] answer as far as possible. (b) Determine and plot the impulse response h[n] for the overall cascade system.

  • CONVOLUTION - Questions 4 and 5 4. Consider an LTI system with an impulse response h(n)...

    CONVOLUTION - Questions 4 and 5 4. Consider an LTI system with an impulse response h(n) = [1 2 1] for 0 <n<2. If the input to the system is x(n) = u(n)-un-2) where u(n) is the unit-step, calculate the output of the system y(n) analytically. Check your answer using the "conv" function in MATLAB. 5. Consider an LTI system with an impulse response h(n) = u(n) where u(n) is the unit-step. (a) If the input to the system is...

  • signals and systems Question 1 (30%): Consider a LTI systern which is comprised of four subsystems...

    signals and systems Question 1 (30%): Consider a LTI systern which is comprised of four subsystems whose impulse responses are hi(t), h2(t). ha(t), and ha(t). u(t) f(t) hi(t) h2(t) 13 ha(1) Where: hi (t) = δ(t + 1) h2(t) = 2(u(t)-u(t-1)] hs(t) = 201t-2) h1(t) = u(t + 2)-u(t) a) (8%) Compute the overall impulse response htotal(t) of the system comprised of hi(t), h2(t), hs(t), and h4(t). Sketch and write the expression for htotai(t) b) (4%) Is the total system...

  • 2. Consider the following interconnection of four LTI systems where each system is described by its...

    2. Consider the following interconnection of four LTI systems where each system is described by its impulse response, denoted by h,(t) for i E (1,2,3,4): i (t) hi(t) r(t) z(t) (t)h) но hs(t) alt) h4(t) 2(t) It is not hard, but is tedious, to show that an interconnection of LTI systems is LTI. Assuming this result, consider the system a(t) b(t) where r(t) and b(t) are the same signals in the two block diagrams and h(t) is the impulse response...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT