Question

Note: Course: Discrete-time Signal Processing. Please help me to solve this problem step-by-step process. And thank you for y

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Note: Course: Discrete-time Signal Processing. Please help me to solve this problem step-by-step process. And thank...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • Help me do this problem step by step LSM1 Problem (50 pts) Consider a causal continuous-time...

    Help me do this problem step by step LSM1 Problem (50 pts) Consider a causal continuous-time LTI system with input-output relationship dt+)t). (a) Find the transfer function H(s) of the system and specify its ROC. (b) Find the impulse response h(t) of the system. (12 pts) (12 pts) (c) Using the convolution property of the Laplace transform, find the output y(t) of the system in response to the input (t)ut) e2-u(t 1 (26 pts)

  • 2. (a) For each sample of a discrete time signal x[n] as input, a system S...

    2. (a) For each sample of a discrete time signal x[n] as input, a system S outputs the value y[n- . Determine whether the system S is i. linear ii. time-invariant 1ll. causal iv. stable Each of your answers should be supported by justification. In other words, show your reasoning (b) Consider a stable linear time-invariant (LTI) system with transfer function H(z). It is required to design a LTI compensator system G(z) that is in cascade with H(z) such that...

  • Solve these examples in detailed step wise EXAMPLE 3.4.5 Determine the partial-fraction expansion of the proper...

    Solve these examples in detailed step wise EXAMPLE 3.4.5 Determine the partial-fraction expansion of the proper function X(2) = 1- 1.52-1 +0.52-2 EXAMPLE 3.4.7 Determine the partial-fraction expansion of (1+z-1)(1 - 2-1)2 EXAMPLE 3.4.8 Determine the inverse z-transform of X (2) = 1-1.52-1 +0.52-? (a) ROC: Iz/ > 1 (b) ROC: Iz1 <0.5 (e) ROC: 0,5 < Iz <1 EXAMPLE 3.4.10 Determine the causal signal x(n) having the z-transform X(z) = (1 + 2-1) (1 - 2-1)2 EXAMPLE 3.5.2 A...

  • This is digital signal processing question and kindly solve the problem as soon as possible Need...

    This is digital signal processing question and kindly solve the problem as soon as possible Need the solution with block diagram for v(n) w(n) h(n) step by step 2- Consider the following system: 5 Marks r, vin) Assume that Xe()-0 forl fI> f, and that Hle")- L. How is the output y(n) of the above discrete time system related to the input Xar Let h(n) be the unit sample response of an ideal low pass filter. The figure shown below...

  • 4. (5 pts) Consider a discrete-time LTI system T that generates an output y[n] according to...

    4. (5 pts) Consider a discrete-time LTI system T that generates an output y[n] according to a2 y[n] bx[n] – ay[n – 1] - *[n – 2] where a, b are non-negative real constants. (a) (2 pts) Find the poles of the z-transform of the impulse response h[n] of T. (b) (3 pts) Let H(ejl be the frequency response of T. Find a, b so that the system is causal and stable, |H(1)| = |H(ejº)] = 0.04, and |H(-1)] =...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • Consider the discrete-time periodic signal n- 2 (a) Determine the Discrete-Time Fourier Series (DTFS) coefficients ak...

    Consider the discrete-time periodic signal n- 2 (a) Determine the Discrete-Time Fourier Series (DTFS) coefficients ak of X[n]. (b) Suppose that x[n] is the input to a discrete-time LTI system with impulse response hnuln - ]. Determine the Fourier series coefficients of the output yn. Hint: Recall that ejIn s an eigenfunction of an LTI system and that the response of the system to it is H(Q)ejfhn, where H(Q)-? h[n]e-jin

  • a causal discrete time LTI system is implemented using the difference equation y(n)-0.5y(n-1)=x(n)+x(n-1) where x(n) is...

    a causal discrete time LTI system is implemented using the difference equation y(n)-0.5y(n-1)=x(n)+x(n-1) where x(n) is the input signal and y(n) the output signal. Find and sketch the impulse response of the system

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT