Question

A conducting rod of length 4.5 m is sliding downward between two vertical rails without friction....

A conducting rod of length 4.5 m is sliding downward between two vertical rails without friction. The rails have negligible resistance, but the resistance of the rod is 0.8 Ω. The rails are connected to an 23.3-Ω resistor, and the entire apparatus is placed in a 0.1-T uniform magnetic field. The rod is sliding down at the constant velocity of 7.4 m/s. What is the value of the constant current generated in the rod?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

induced emf in the rod = e = B*L*v = 0.1*4.5*7.4 = 3.33 V

and given two resistances are in series

then the net resistance of the circuit is Rnet = 0.8+23.3 = 24.1 ohm

current I = V/Rnet = 3.33/24.1 = 0.138 A

Add a comment
Know the answer?
Add Answer to:
A conducting rod of length 4.5 m is sliding downward between two vertical rails without friction....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A conducting rod with length L, is to slide without friction on horizontal infinitely long metal...

    A conducting rod with length L, is to slide without friction on horizontal infinitely long metal rails connected through resistance R as show in Fig. uniform magnetic field B is directed out of the plane of the figure. What is the applied force F required to move the bar to the right with a constant speed At what rate is energy dissipated in the resistor R?

  • A square rod has a resistance R and slides without friction down parallel conduction rails of...

    A square rod has a resistance R and slides without friction down parallel conduction rails of negligible resistance, as shown in the figure. The rails are connected at the bottom so that the square rod and the rails form a conducting loop. The rails are inclined at an angle 0 = 45° to the surface. A uniform magnetic field B exists throughout the region along the Z-direction. The length of the square rod is L. For the coordinate system given...

  • A conducting rod of mass m and negligible resistance is free to slide without friction along...

    A conducting rod of mass m and negligible resistance is free to slide without friction along two parallel rails of negligible resistance separated by a distance I and connected by a resistor R. The rails are attached to a long inclined plane that makes an angle with the horizontal. There is a magnetic field B as shown. (a) Show that there is a retarding force on the bar and find an expression for this force. (b) Find an expression for...

  • The figure shows a 11-cm-long metal rod pulled along twofrictionless, conducting rails at a constant...

    The figure shows a 11-cm-long metal rod pulled along two frictionless, conducting rails at a constant speed of 3.9 m/s. The rails have negligible resistance, but the rod has a resistance of 0.65 Ω . (Figure 1)FigureThe figure shows a vertical rod sliding along a pair of horizontal rails to the left at speed v. The rails are connected at their left ends. Magnetic field B of 1.4 teslas is directed into the page in the whole region.Part AWhat is...

  • A conducting bar of mass m is placed on two long conducting rails

    A conducting bar of mass m is placed on two long conducting rails a distance l apart. The rails are inclined at an angle theta with respect to the horizontal, andthe bar is able to slide on the rails with negligible friction. The bar and rails are in a uniform and constant magnetic field of magnitude B orientedperpendicular to the incline. A resistor of resistance R connects the upper ends of the rails and completes the circuit as shown. The...

  • Two parallel conducting rails with negligible resistance are connected at one end by a resistor of...

    Two parallel conducting rails with negligible resistance are connected at one end by a resistor of resistance R, as shown in the figure. The rails are placed in a magnetic field Bext, which is perpendicular to the plane of the rails. This magnetic field is uniform and time independent. The distance between the rails is f. A conducting rod slides without friction on top of the two rails at constant velocity v . Three-dimensional view ext ind Top view Bext...

  • A zero resistance rod is sliding west along two zero resistance rails that are 2.3 m...

    A zero resistance rod is sliding west along two zero resistance rails that are 2.3 m apart, on the ground where the earth’s magnetic field is nearly vertical with a magnitude of 0.60 mT. the bar is moving with a velocity 60 m/s. As it moves through the earth’s magnetic field an EMF is generated that creates a current flowing through the rails. a far away western resistance completes the circuit with a 5 Ω.   What is voltage difference across...

  • Consider a 1-m conducting rod attached at each end by conducting rails. The rails are connected...

    Consider a 1-m conducting rod attached at each end by conducting rails. The rails are connected at the top and the total loop has a resistance of 3-Ohms. (see figure below). The rod falls to the ground at a constant velocity. v. The apparatus is inside a constant magnetic field, B = 2.0 T (directed out of the page). The mass of the rod is 0.5kg. B = 2:0 T (out of R=5 1 m D VE a) What is...

  • electric The conducting rod bd shown in the figure makes contact with metal rails ab and...

    electric The conducting rod bd shown in the figure makes contact with metal rails ab and cd. The apparatus is in a uniform magnetic field of 0.8 T. perpendicular to the plane of the figure. Length 1 = 98 cm. If the resistance of the circuit is 1.50 Ohm (assumed to be constant), find the force (magnitude and directions required to keep the rod moving to the right with a constant speed of 3.1 m/s. Ignore friction (Right is positive,...

  • A conducting bar slides without friction on two parallel horizontal rails that are 50 cm apart...

    A conducting bar slides without friction on two parallel horizontal rails that are 50 cm apart and connected by a wire at one end. The resistance of the bar and the rails is constant and equal to 0.10 0. A uniform magnetic field is perpendicular to the plane of the rails. A 0.080-N force parallel to the rails is required to keep the bar moving at a constant speed of 0.50 m/s. What is the magnitude of the magnetic field...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT