Question

A conducting rod with length L, is to slide withou
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Soing RestutanceR netie tietdB speed a) Feんce en cument dell to magnetic fuld: and appl orceF IF ILB RJ 2.2. う 1

Add a comment
Know the answer?
Add Answer to:
A conducting rod with length L, is to slide without friction on horizontal infinitely long metal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A conducting rod of mass m and negligible resistance is free to slide without friction along...

    A conducting rod of mass m and negligible resistance is free to slide without friction along two parallel rails of negligible resistance separated by a distance I and connected by a resistor R. The rails are attached to a long inclined plane that makes an angle with the horizontal. There is a magnetic field B as shown. (a) Show that there is a retarding force on the bar and find an expression for this force. (b) Find an expression for...

  • Constants A conducting rod with length 0.213 m , mass 0.100 kg , and resistance 83.5...

    Constants A conducting rod with length 0.213 m , mass 0.100 kg , and resistance 83.5 Ω moves without friction on metal rails as shown in the following figure(Figure 1). A uniform magnetic field with magnitude 1.50 T is directed into the plane of the figure. The rod is initially at rest, and then a constant force with magnitude 1.90 N and directed to the right is applied to the bar.How many seconds after the force is applied does the...

  • A conducting bar slides without friction on two parallel horizontal rails that are 50 cm apart...

    A conducting bar slides without friction on two parallel horizontal rails that are 50 cm apart and connected by a wire at one end. The resistance of the bar and the rails is constant and equal to 0.10 0. A uniform magnetic field is perpendicular to the plane of the rails. A 0.080-N force parallel to the rails is required to keep the bar moving at a constant speed of 0.50 m/s. What is the magnitude of the magnetic field...

  • A conducting pustion bar slides without friction on two parallel horizontal rails that are 50cm apart...

    A conducting pustion bar slides without friction on two parallel horizontal rails that are 50cm apart and connected by a wire at one end. The resistance of the bar and the rails is constant and caual to 0.10 hat uniform magnetic field is perpendicular to the Plane of the rails of 0.080-N force parallel to the rails is reauired to keep the at a constant speed of c. 50 m/s. What is the magnitude of the magnetic field in Tesla?...

  • A conducting rod of length 4.5 m is sliding downward between two vertical rails without friction....

    A conducting rod of length 4.5 m is sliding downward between two vertical rails without friction. The rails have negligible resistance, but the resistance of the rod is 0.8 Ω. The rails are connected to an 23.3-Ω resistor, and the entire apparatus is placed in a 0.1-T uniform magnetic field. The rod is sliding down at the constant velocity of 7.4 m/s. What is the value of the constant current generated in the rod?

  • A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length...

    A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length of the bar is 1.60m and a uniform magnetic field of 2.20T is applied perpendicular to the paper pointing outward as shown a) What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? b) At what rate is energy dissipated in the 4.00 ohm resistor? A conducting bar moves along frictionless conducting rails connected...

  • The conducting rod shown in the figure has length L and is being pulled along horizontal, frictio...

    The conducting rod shown in the figure has length L and is being pulled along horizontal, frictionless, conducting rails at a constant velocity. The rails are connected at one end with a metal strip. A uniform magnetic field, directed out of the page, fills the region in which the rod moves. Assume that L 8.3 cm, the speed of the rod is v = 4.4 m/s, and the magnitude of the magnetic field is B = 1.0 T. (a) what...

  • 6. The figure below shows a conducting rod free to slide along a pair of conducting...

    6. The figure below shows a conducting rod free to slide along a pair of conducting rails, in a region where a uniform and constant (in time) magnetic field is directed into the plane of the paper. Suppose that the voltage of the battery in the circuit is 3. 0 V and the magnitude of the magnetic field (directed perpendicularly into the plane of the paper) is 0. 60 T, and the length of the rod between the rails is...

  • Problem 6. A conducting rod of mass 50 grams slides without friction on a pair of...

    Problem 6. A conducting rod of mass 50 grams slides without friction on a pair of conducting horizontal rails spaced 0.750 m apart. A steady current of 85.0 A exists in the rails and bar as shown. The rails and bar are in a uniform 1.35 T magnetic field directed as shown. (a) What is the magnitude and direction of the acceleration of the rod? (b) If the rod starts from rest and reaches a speed of 150 m/s when...

  • A conducting rod whose length is b = 1.60 m is placed on frictionless U-shaped metal...

    A conducting rod whose length is b = 1.60 m is placed on frictionless U-shaped metal rails that is connected to a lightbulb having a resistance of 4.00 N as shown in the figure. The rails and the rod are in the plane of the page. A constant uniform magnetic field of strength 2.20 T is applied perpendicular to and out of the paper. What is the magnitude of the external applied force needed to move the rod to the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT