Question

Problem 6. A conducting rod of mass 50 grams slides without friction on a pair of conducting horizontal rails spaced 0.750 m apart. A steady current of 85.0 A exists in the rails and bar as shown. The rails and bar are in a uniform 1.35 T magnetic field directed as shown. (a) What is the magnitude and direction of the acceleration of the rod? (b) If the rod starts from rest and reaches a speed of 150 m/s when it leaves the rails, how long are the rails from where the rod starts? (c) If the direction of the current is reversed, how would your answers to part (a) change? (d) If the field were in the plane of the rails and pointing from the bottom of the page to the top of the page, would the rod accelerate? Justify your answer.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solvtiong @uct the eordneting ral be pa, 1 x >1Mfx, χ vesting 37 ween B a 90°) [I35x55% 0.750] N 8606 N 50X Using Fle mingI the wag ne tie el i i he plane of the Tails and om below to absve th e page,the angle eld B and lo sin180 As on the Iod ,so

Add a comment
Know the answer?
Add Answer to:
Problem 6. A conducting rod of mass 50 grams slides without friction on a pair of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails...

    3. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails that are d = 12.0cm apart and L = 45.0cm long. The rod carries a current of 1 = 48.0 A in the direction shown and rolls along the rails without slipping. A uniform magnetic field of magnitude 0.240 T is 2 Page directed perpendicular to the rod and the rails. If it starts from rest, what is the speed of the rod as...

  • A conducting bar slides without friction on two parallel horizontal rails that are 50 cm apart...

    A conducting bar slides without friction on two parallel horizontal rails that are 50 cm apart and connected by a wire at one end. The resistance of the bar and the rails is constant and equal to 0.10 0. A uniform magnetic field is perpendicular to the plane of the rails. A 0.080-N force parallel to the rails is required to keep the bar moving at a constant speed of 0.50 m/s. What is the magnitude of the magnetic field...

  • need help with this part A conducting rod with a weight of 2.00 N and a...

    need help with this part A conducting rod with a weight of 2.00 N and a length of 3.00 m can slide with no friction down a pair of vertical conducting rails, as shown in the figure below. The rails are joined at the bottom by a lightbulb of resistance 3.00 ohms. The rails have stops near the bottom to prevent the rod from smashing the bulb. There is a uniform magnetic field of magnitude 5.00 T directed out of...

  • 3. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails...

    3. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails that are d = 12.0cm apart and L = 45.0cm long. The rod carries a current of I = 48.0 A in the direction shown and rolls along the rails without slipping. A uniform magnetic field of magnitude 0.240 T is 2 Page directed perpendicular to the rod and the rails. If it starts from rest, what is the speed of the rod as...

  • A square rod has a resistance R and slides without friction down parallel conduction rails of...

    A square rod has a resistance R and slides without friction down parallel conduction rails of negligible resistance, as shown in the figure. The rails are connected at the bottom so that the square rod and the rails form a conducting loop. The rails are inclined at an angle 0 = 45° to the surface. A uniform magnetic field B exists throughout the region along the Z-direction. The length of the square rod is L. For the coordinate system given...

  • A conducting rod of mass m and negligible resistance is free to slide without friction along...

    A conducting rod of mass m and negligible resistance is free to slide without friction along two parallel rails of negligible resistance separated by a distance I and connected by a resistor R. The rails are attached to a long inclined plane that makes an angle with the horizontal. There is a magnetic field B as shown. (a) Show that there is a retarding force on the bar and find an expression for this force. (b) Find an expression for...

  • A conducting pustion bar slides without friction on two parallel horizontal rails that are 50cm apart...

    A conducting pustion bar slides without friction on two parallel horizontal rails that are 50cm apart and connected by a wire at one end. The resistance of the bar and the rails is constant and caual to 0.10 hat uniform magnetic field is perpendicular to the Plane of the rails of 0.080-N force parallel to the rails is reauired to keep the at a constant speed of c. 50 m/s. What is the magnitude of the magnetic field in Tesla?...

  • A pair of parallel conducting rails that are L = 22 cm apart lies at right...

    A pair of parallel conducting rails that are L = 22 cm apart lies at right angles to a uniform magnetic field of 0.7 T directed into the page, as shown in the figure below. A R = 172 resistor is connected across the rails. A conducting bar is moved to the right at 2 m/s across the rails. B into page R L 2 m/s ♡ ♡ ♡ 1) What is the current in the resistor? (Express your answer...

  • 1. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails...

    1. A rod of mass 0.720 kg and radius 6.00 cm rests on two parallel rails (see Figure right) that are d- 12.0 cm apart and L 45.0 cm long. The rod carries a current ofI 46.0 A in the direction shown and rolls along the rails without slipping. A uniform magnetic field of magnitude 0.540 T is directed perpendicular to the rod and the rails. (a) If it starts from rest, what is the speed of the rod as...

  • A conducting rod of mass m and resistance R, slides with no friction on an horizontal...

    A conducting rod of mass m and resistance R, slides with no friction on an horizontal rail of width l and negligible resistance. At t=0, the rod passes O with a velocity v0. The rail is closed from one side only, so that the rod actually forms a closed circuit. A constant magnetic field B is present everywhere, perpendicular to the plane of the rail. v0, m , l, R and B are given? OR Which of the following statements...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT