Question

Image for 6. The figure below shows a conducting rod free to slide along a pair of conducting rails, in a region where a

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

let the maximum attained speed is v

magnetic field , B = 0.60 T

voltage , V = 3 V

Now, for maximum speed

induced emf = emf of battery

B*v*L = V

0.60 * v * 0.20 = 3

solving for v

v= 25 m/s

the maximum speed attained by the rod is 25 m/s

Add a comment
Know the answer?
Add Answer to:
6. The figure below shows a conducting rod free to slide along a pair of conducting...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A conducting rod of mass m and negligible resistance is free to slide without friction along...

    A conducting rod of mass m and negligible resistance is free to slide without friction along two parallel rails of negligible resistance separated by a distance I and connected by a resistor R. The rails are attached to a long inclined plane that makes an angle with the horizontal. There is a magnetic field B as shown. (a) Show that there is a retarding force on the bar and find an expression for this force. (b) Find an expression for...

  • The figure shows a 11-cm-long metal rod pulled along twofrictionless, conducting rails at a constant...

    The figure shows a 11-cm-long metal rod pulled along two frictionless, conducting rails at a constant speed of 3.9 m/s. The rails have negligible resistance, but the rod has a resistance of 0.65 Ω . (Figure 1)FigureThe figure shows a vertical rod sliding along a pair of horizontal rails to the left at speed v. The rails are connected at their left ends. Magnetic field B of 1.4 teslas is directed into the page in the whole region.Part AWhat is...

  • The conducting rod shown in the figure has length L and is being pulled along horizontal, frictio...

    The conducting rod shown in the figure has length L and is being pulled along horizontal, frictionless, conducting rails at a constant velocity. The rails are connected at one end with a metal strip. A uniform magnetic field, directed out of the page, fills the region in which the rod moves. Assume that L 8.3 cm, the speed of the rod is v = 4.4 m/s, and the magnitude of the magnetic field is B = 1.0 T. (a) what...

  • There is a uniform magnetic field of magnitude B, pervading all space, perpendicular to the plane of rod and rails.

    There is a uniform magnetic field of magnitude B, pervading all space, perpendicular to the plane of rod and rails. The rod is released from rest, and it is observed that it accelerates to the left. In what direction does the magnetic field point?a) A conducting rod is free to slide on two parallel rails with negligible friction. At the right end of the rails, a voltage source of strength V in series with a resistor of resistance R makes...

  • The figure below shows a bar of mass m = 0.280 kg that can slide without...

    The figure below shows a bar of mass m = 0.280 kg that can slide without friction on a pair of rails separated by a distance ℓ = 1.20 m and located on an inclined plane that makes an angle θ = 29.5° with respect to the ground. The resistance of the resistor is R = 2.20 Ω, and a uniform magnetic field of magnitude B = 0.500 T is directed downward, perpendicular to the ground, over the entire region...

  • A conducting rod with length L, is to slide without friction on horizontal infinitely long metal...

    A conducting rod with length L, is to slide without friction on horizontal infinitely long metal rails connected through resistance R as show in Fig. uniform magnetic field B is directed out of the plane of the figure. What is the applied force F required to move the bar to the right with a constant speed At what rate is energy dissipated in the resistor R?

  • The conducting rod shown in the accompanying figure moves alongparallel metal rails that are 25-cm...

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 10 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25Ω. The rod moves at a constant speed of 5 m/s. Find:a) The current that flows through the resistanceb) The power supplied by the resistancec) The force...

  • 1. A rod (length = 10 cm) moves on two horizontal frictionless conducting rails, as shown...

    1. A rod (length = 10 cm) moves on two horizontal frictionless conducting rails, as shown below. The magnetic field in the region is directed perpendicularly to the plane of the rails and is uniform and constant. If a constant force of 0.60 N moves the bar at a constant velocity of 2.0 m/s, show that the current through the 12-2 load resistor is 0.32 A. 1222 An ideal step-down transformer has 200 primary turns and 50 secondary turns. If...

  • The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart.

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25 Ω. (a) What is the emf induced in the rod when it is moving to the right with a speed of 5.0 m/s? (b) What force is required to...

  • 23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at...

    23. As shown in the figure below, a conducting bar of length - 20 em is pulled to the left on frictionlessrails at a constant speed of y 20 m/s. A uniform magnetic field directed out of the page has a magnitude of B-O1T If the rails are connected to a resistor of resistance R-4.0 Ω andan ideal battery of emf e-1.6V, find the magnitude and direction of the current flowing in the circuit formed. Assume that the bar and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT