Question

Q1) Given an analog signal X(t) = 3 cos (2π . 2000t) + 2 cos (2π...

Q1) Given an analog signal X(t) = 3 cos (2π . 2000t) + 2 cos (2π . 5500t) sampled at a rate of 10,000 Hz,

a. Sketch the spectrum of the sampled signal up to 20 kHz;

b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal

; c. Determine the frequency/frequencies of aliasing noise

. Q2) Given an analog signal x(t) whose frequency content is given by

?(?) = { 4 |?| ≤ 3 ?? 1 3 < |?| ≤ 5 ?? 0 ??ℎ??????

a) Draw X(f).

b) Draw the spectrum of the sampled signal xs(t) and of the recovered signal y(t) for the following cases. Assume that the signal is recovered from the samples with a low pass filter with a cutoff frequency of 5 Hz. Draw the spectrum from 0 until 20 Hz.

i) Sampling rate is 12 Hz.

ii) Sampling rate is 10 Hz.

iii) Sampling rate is 9 Hz.

c) Comment on the results of parts b (i), (ii), and (iii).

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Q1) Given an analog signal X(t) = 3 cos (2π . 2000t) + 2 cos (2π...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 2.5. Given an analog signal x(t)5cos(2T 2, 5001) + 2cos(2T 4, 5001), for t2 0 sampled...

    2.5. Given an analog signal x(t)5cos(2T 2, 5001) + 2cos(2T 4, 5001), for t2 0 sampled at a rate of 8,000 Hz, a. sketch the spectrum of the sampled signal up to 20 kHz; b. sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal; c. determine the frequneuencis f aliasing noise.

  • 3. (50 points] Consider the signal (t= cos(27 (100)+]: 1) Let's take samples of x(t) at...

    3. (50 points] Consider the signal (t= cos(27 (100)+]: 1) Let's take samples of x(t) at a sampling rate fs = 180 Hz. Sketch the spectrum X (f) of the sampled signal x (t). Properly label x-axis and y-axis. 2) Now suppose we will use an ideal lowpass filter of gain 1/fs with a cutoff frequency 90 Hz for the sampled signal xs(t). What is the output of the filter x,(t)? 3) Now let's take samples of x(t) at sampling...

  • An analog signal is given as below x(t) = 10sin 4rtt The signal is sampled by...

    An analog signal is given as below x(t) = 10sin 4rtt The signal is sampled by two different frequencies f, = 1Hz, f, = 10Hz respectively, and the output are yı, Yz. (i) Sketch signal x(t) in the time domain. (3 marks) (ii) Sketch frequency spectrum of x(t). (3 marks) (iii) After sampling, the continuous signal is converted to a discrete signal. Draw the two discrete signals Yı, Y2: (4 marks) (iv) Discuss whether f1, f, can successfully sample the...

  • 1. An analog signal \(\mathrm{x}(\mathrm{t})\) contains frequencies from 0 up to \(10 \mathrm{kHz}\). You can assume...

    1. An analog signal \(\mathrm{x}(\mathrm{t})\) contains frequencies from 0 up to \(10 \mathrm{kHz}\). You can assume any arbitrary spectrum for this signal. (Note that this signals also has frequencies from 0 to \(-10 \mathrm{KHz} .)\) a) Draw the frequency spectrum of the signal after it has been sampled with a sampling frequency \(\mathrm{F}_{\mathrm{s}}=25 \mathrm{kHz}\) b) What range of sampling frequencies allows exact reconstruction of this signal from its samples? c) How is the original signal reconstructed from the sampled signal?...

  • Problem 4.(30 pts) Given the analog signal x(t) cos(2 cos(3t)+2 sin(4mt) A.(10 pts) Find the Nyquist...

    Problem 4.(30 pts) Given the analog signal x(t) cos(2 cos(3t)+2 sin(4mt) A.(10 pts) Find the Nyquist frequency (sampling frequency) which guarantees That x() can be recovered from it's sampled version xIn] with no aliasing. B.(10 pts) If the sampling period of Ts 0.4 see is used identify all discrete frequencies Of the signal x(t), also indicate if this sampling period is adequate to recover x(t) from xn] C.(10 pts) Suppose signal x(t) is modulated by signal e(t) = cos(2000mt) what...

  • Consider a sampler which samples the continuous-time input signal x(t) at a sampling frequency fs =...

    Consider a sampler which samples the continuous-time input signal x(t) at a sampling frequency fs = 8000 Hz and produces at its output a sampled discrete-time signal x$(t) = x(nTs), where To = 1/fs is the sampling period. If the sampled signal is passed through a unity-gain lowpass filter with cutoff frequency of fs/2, sketch the magnitude spectrum of the resulting signal for the following input signals: (a) x(t) = cos(6000nt). (b) x(t) = cos(12000nt). (c) x(t) = cos(18000nt).

  • Given an analog signal ?? (?) = 10 cos(3500??) , ??? ? ≥ 0, sampled at...

    Given an analog signal ?? (?) = 10 cos(3500??) , ??? ? ≥ 0, sampled at a rate of 8 kHz. Determine the expression for the spectrum ?(?) of the sampled signal and plot the spectrum of the sampled signal. You can use MATLAB wvtool for spectrum plot. Is there any aliasing?

  • Problem 3 (30 points). Given an analog signal x(t) = 6 cos(200xt)+3 cos(600xt) + COS(1600xt) a....

    Problem 3 (30 points). Given an analog signal x(t) = 6 cos(200xt)+3 cos(600xt) + COS(1600xt) a. What is the minimum sampling frequency such that no aliasing occurs? b. Suppose sampling frequency = 1K Hz, plot the frequency spectrum range from 1 to 1 for x(n) (use for digital frequency in x-axis). Explain how to get your plots in detail. c. Repeat part b, i.e. plot the frequency spectrum range from - i tor for x(n) (use @ for digital frequency...

  • Question 1: (Sampling and Aliasing Effeet) (25 Marks) The given analog signal x(t)--sin(16xt)+ sin(11xt)+ sin (5nt), where t is in milliseconds, is sampled at a rate of 12kHz. The resulting sampl...

    Question 1: (Sampling and Aliasing Effeet) (25 Marks) The given analog signal x(t)--sin(16xt)+ sin(11xt)+ sin (5nt), where t is in milliseconds, is sampled at a rate of 12kHz. The resulting samples are immediately reconstructed by an ideal reconstructor. a. Find and sketch the spectrum of x(t) versus Ω. b. Find and sketch the spectrum of the sampled signal versus o. c. Determine the analog signal x (t) at the output of the reconstructor. d. Prove the x(0) and x(t) having...

  • Q2.) Consider the sampling of the continuous-time signal x(t) to obtain a discrete-time signal x[...

    Q2.) Consider the sampling of the continuous-time signal x(t) to obtain a discrete-time signal x[n (1)-10cos(1000m + π/3) + 20cos(2000m + π/6). 110points! ], where x a) What is the maximum sampling interval (minimum sampling frequency) that could be used to ensure an aliasing free sampling of this signal? b) Plot the spectrum of the sampled signal if x() is sampled using a sampling frequency of (i) 2500 Hz (ii) 1800 Hz and state whether there will be an aliasing...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT