Question

find the total electric flux leaving the spherical surface r = 2.5 m given the charge...

find the total electric flux leaving the spherical surface r = 2.5 m given the charge configuration a line charge rho_l = 1/(z² + 1) nC/m on the z axis and

A finite line charge of length L carrying uniform line charge density rho_l is coincident with the z axis.Determine V in the plane bisecting the line charge.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
find the total electric flux leaving the spherical surface r = 2.5 m given the charge...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The spherical surface r = 1 m, 2 m and 3 m carry surface charge densities...

    The spherical surface r = 1 m, 2 m and 3 m carry surface charge densities of 20, -9 and 17. 2 nC/m2 respectively Calculate the electric flux leaving through the surface r 5 m а. Find electric flux density at P (1, -1, 2) b. Four charges are located at the vertices of a rectangular plane shown in Fig. Find the magnitude and direction of resultant force on Qı. The width of the plane is 5 cm and the...

  • what is the total electric flux due to these two point charges through a spherical surface...

    what is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radius r 1 = 0.610 m ? Constants A point charge q.-3.95 nC is located on the x-axis at z 2.25 m, and a second point charge g2--5.50 C is on the y-axis at y 1.25 m Submit Request Answer ▼ Part B What is the total electric flux due to these two point charges through a spherical...

  • Question 1 (compulsory): The following set of charges is given in free space Charge σ,--40 nC/m Number and type of charge #1 , charged spherical shell of radius Ri-10 cm carrying uniform surface char...

    Question 1 (compulsory): The following set of charges is given in free space Charge σ,--40 nC/m Number and type of charge #1 , charged spherical shell of radius Ri-10 cm carrying uniform surface charge density σ #2, charged spherical shell of radius R2-5 cm carrying uniform surface charge density Ơ Location (0, 0, 0) m (position of the centre of the sphere) (0, 0, 0) m (position of the centre of the sphere σ,-160 nC/m2 The positions of the spheres'...

  • to find the electric field along a line bisecting a finite length assuming that the charge...

    to find the electric field along a line bisecting a finite length assuming that the charge distribution is points) To find the electric field along aline bisecting a finite length assuming that the charge distribution the contributions the field is -A for -a <x<o and for o ex<a, we integrate to from all the charge in the wire. We assume that the wire lies along the x-axis a 2 /(z 5.635 10-8 C/m, a 0.22m, ask E(y 1.00m).

  • 1. what is the electric field at the centre (r = 0) of a hemisphere bounded...

    1. what is the electric field at the centre (r = 0) of a hemisphere bounded by r = a, 0 < θ < π/2 and 0 < φ < 2m, that carries a uniform volumetric charge density P3(The charges are distributed in this hemispherical 3D space. Use spherical coordinates due to the hemispherical geometry.) Consider some charges that are lined up in a straight line. This line of charge carries a uniform linear charge density. Let's make Pl =...

  • A uniform electric field is produced due to the charge distribution inside the closed cylindrical surface...

    A uniform electric field is produced due to the charge distribution inside the closed cylindrical surface (a) What type of charge distribution is inside the surface? C a positive line charge situated on and parallel to the axis of the cylinder O a negatively charged plane parallel to the end faces of the cylinder C a positively charged plane parallel to the end faces of the cylinder a collection of negative point charges arranged in a line at the center...

  • Help with question 2 1. what is the electric field at the centre (r = 0)...

    Help with question 2 1. what is the electric field at the centre (r = 0) of a hemisphere bounded by r = a, 0 < θ < π/2 and 0 < φ < 2m, that carries a uniform volumetric charge density P3(The charges are distributed in this hemispherical 3D space. Use spherical coordinates due to the hemispherical geometry.) Consider some charges that are lined up in a straight line. This line of charge carries a uniform linear charge density....

  • Exercise 22.10 12 of 22 Part A Constants What is the total electric flux due to...

    Exercise 22.10 12 of 22 Part A Constants What is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radius γ 1-0.520 m ? A point charge q1 3.25 nC is located on the x- axis at x 1.85 m, and a second point charge q -7.00 nC is on the y-axis at y 1.15 m. 四 ? Submit Request Answer Part B What is the total electric flux...

  • If a charge is located at the center of a spherical volume and the electric flux through the surface of the sphere is Φ...

    If a charge is located at the center of a spherical volume and the electric flux through the surface of the sphere is Φ, what should be the flux through the surface if the radius of the sphere were tripled? Draw the diagram with a sphere of radius R and the second surface of radius 3R. Draw enough field lines to illustrate the field. Calculate the flux through each surface. What is the relationship of the flux through radius R...

  • Problem A.1 - Calculate electric flux f5) The electric field due to an infinite line of...

    Problem A.1 - Calculate electric flux f5) The electric field due to an infinite line of charge is perpendicular to the line and has magnitude E . Consider an imaginary cylinder with radius e-25 cm and length L = 40 cm that has an infinite line of positive charge running along its axis. The charge per unit length is 3 HC/m. Do not use Gauss's Law, but actually calculate the flux! a) What is the electric flux through the cylinder...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT