Question

Two charged plates are 1.30 cm apart and the electric field intensity between the plates is...

Two charged plates are 1.30 cm apart and the electric field intensity between the plates is 2.60 × 10^3 N/C. a. What is the electric potential difference between the plates? b. What work is required to move a proton from the negative plate to the positive plate?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two charged plates are 1.30 cm apart and the electric field intensity between the plates is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A uniform electric field exists in the region between two oppositely charged parallel plates 1.50 apart....

    A uniform electric field exists in the region between two oppositely charged parallel plates 1.50 apart. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate in a time interval 1.41×10−6 . A) Find the magnitude of the electric field. Use 1.60×10−19 for the magnitude of the charge on an electron and 1.67×10−27 for the mass of a proton. ------ N/C B)Find the speed of the proton at...

  • Please complete both The electric field strength between two parallel conducting plates separated by 4.20 cm...

    Please complete both The electric field strength between two parallel conducting plates separated by 4.20 cm is 6.80 x 104 v/m. (a) What is the potential difference between the plates (in kV)2 kv (b) The plate with the lowest potential is taken to be at zero volts. What is the potential (in V) 1.90 cm from that plate (and 2.30 cm from the other)? Additional Materials Reading .-2 points oscoPhys2016 19.2.WA016 0/20 Submissions Used A proton is acted on by...

  • A uniform electric field exists in the region between two oppositely charged parallel plates 1.59 cm...

    A uniform electric field exists in the region between two oppositely charged parallel plates 1.59 cm apart. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate in a time interval 1.59×10−6 s . Part A) Find the magnitude of the electric field. Use 1.60×10−19 C for the magnitude of the charge on an electron and 1.67×10−27 kg for the mass of a proton. __________ N/C Part B)...

  • charged gold for charged metal plates I Figure 9. Investigating the electric field between two charged...

    charged gold for charged metal plates I Figure 9. Investigating the electric field between two charged metal plates 1 Figure 9.5 on page 134 shows apparatus used to investigate the field between a pair of charged, parallel plates. a Explain why the piece of gold foil deflects in the manner shown. b State and explain what would be observed if the gold foil momentarily touched the negatively charged plate. 2 A charged dust particle in an electric field experiences a...

  • Two large parallel copper plates are 6.32 cm apart and have a uniform electric field of...

    Two large parallel copper plates are 6.32 cm apart and have a uniform electric field of magnitude E = 4.41 N/C between them (see the figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other Positive plate P Negative plate

  • A uniform electric field exists in the region between two oppositely charged plane parallel plates. A...

    A uniform electric field exists in the region between two oppositely charged plane parallel plates. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate, 1.60 cm distant from the first, in a time interval of 2.60×10−6 s . A.) Find the magnitude of the electric field, with units. B.) Find the speed of the proton when it strikes the negatively charged plate.

  • Two large parallel copper plates are 3.35 cm apart and have a uniform electric field of...

    Two large parallel copper plates are 3.35 cm apart and have a uniform electric field of magnitude E - 3.21 N/C between them (see the figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other. Positive plate P Negative plate Number Units

  • A uniform electric field exists in the region between two oppositely charged parallel plates 1.56 cm...

    A uniform electric field exists in the region between two oppositely charged parallel plates 1.56 cm apart. A proton is released from rest at the surface of the positively charged plate and strikes the surface of the opposite plate in a time interval 1.54×10^−6 s. Part A Find the magnitude of the electric field. Use 1.60x10-19 C for the magnitude of the charge on an electron and 1.67x10-27 kg for the mass of a proton View Available Hint(s) N/C Submit...

  • Two large parallel copper plates are 4.86 cm apart and have a uniform electric field of...

    Two large parallel copper plates are 4.86 cm apart and have a uniform electric field of magnitude E = 5.60 N/C between them (see Figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other.

  • Two large parallel copper plates are 3.73 cm apart and have auniform electric field of...

    Two large parallel copper plates are 3.73 cm apart and have a uniform electric field of magnitude E = 7.98 N/C between them (see the figure). An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT