Question

Ball A, of mass 0.6kg, is initially moving to the right at 4 m/s. Ball B,...

Ball A, of mass 0.6kg, is initially moving to the right at 4 m/s. Ball B, of mass 1.8kg, is initially to the right of ball A and moving to the right at 2 m/s. After the two balls collide, ball B is moving at 3 m/s in the same direction as before. What is the velocity of ball A after this collision. Is this collision elastic or inelastic? What is the fractional change in kinetic energy?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Ball A, of mass 0.6kg, is initially moving to the right at 4 m/s. Ball B,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Sphere A, of mass 0.600 kg, is initially moving to the right at 4.00 m/s. Sphere B, of mass 1.80 kg, is initially to the...

    Sphere A, of mass 0.600 kg, is initially moving to the right at 4.00 m/s. Sphere B, of mass 1.80 kg, is initially to the right of sphere A and moving to the right at 2.00 m/s. After the two spheres collide, sphere B is moving at 3.00 m/s in the same direction as before. (a) What is the velocity (magnitude and direction) of sphere A after this collision? (b) Is this collision elastic or inelastic? (c) Sphere B then...

  • Sphere A, of mass 0.600 kg, is initially moving to the right at 4.00 m/s. Sphere...

    Sphere A, of mass 0.600 kg, is initially moving to the right at 4.00 m/s. Sphere B, of mass 1.80 kg, is initially to the right of sphere A and moving to the right at 2.00 m/s. After the two spheres collide, sphere B is moving at 3.00 m/s in the same direction as before. (a) What is the velocity (magnitude and direction) of sphere A after this collision? (b) Is this collision elastic or inelastic? (c) Sphere B then...

  • (20 pts) On a frictionless, horizontal air table, puck A (with mass 0.15 kg) is moving toward puck B (with mass 0.3 kg), which is initially at rest. After the collision, puck A has a velocity of...

    (20 pts) On a frictionless, horizontal air table, puck A (with mass 0.15 kg) is moving toward puck B (with mass 0.3 kg), which is initially at rest. After the collision, puck A has a velocity of 0.11 m/s to the left, and puck B has a velocity of 0.65 m/s to the right. (a) What was the speed of puck A before the collision? (b) Calculate the change in the total kinetic energy of the system (A and B)...

  • 8. (9 pts.) A 4.00-kg ball, moving to the right at a velocity of +2.00 mis...

    8. (9 pts.) A 4.00-kg ball, moving to the right at a velocity of +2.00 mis on a frictionless table, collides head-on with a stationary 6.50-kg ball. Find the final velocities of the balls if the collision is completely inelastic (the balls stick together). 9. (12 pts.) A 2.5-kg ball and a 5.0-kg ball have an elastic collision. Before the collision, the 2.5-kg ball was at rest and the other ball had a speed of 3.5 m/s. (a) What is...

  • ptA ball A of mass 10 kg is moving to the right at a speedof 3...

    ptA ball A of mass 10 kg is moving to the right at a speedof 3 m/s. Another ball B of mass 26 kg is moving to the leftat a speed of -8 m/s. The balls collide head-on and leave thecollision zone on the same straight line as they entered it.Assuming the collision is totally elastic, what is the speed ofball B after the collision ?(inm/s)

  • A 6.00 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin,...

    A 6.00 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin, scattering it with a speed of 8.00 m/s and at an angle of 38.5 with respect to the initial direction of the bowling ball (*) Calculate the final velocity (magnitude in mys and direction in degrees counterclockwise from the original direction of the bowling ball magnitude m/s direction counterclockwise from the original direction of the bowing ball (b) Ignoring rotation, what was the original...

  • A 1.20-kg ball, moving to the right at a velocity of +2.85 m/s on a frictionless...

    A 1.20-kg ball, moving to the right at a velocity of +2.85 m/s on a frictionless table, collides head-on with a stationary 6.20-kg ball. Find the final velocities of (a) the 1.20-kg ball and of (b) the 6.20-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.

  • A 2.60-kg ball, moving to the right at a velocity of +2.54 m/s on a frictionless...

    A 2.60-kg ball, moving to the right at a velocity of +2.54 m/s on a frictionless table, collides head-on with a stationary 7.80-kg ball. Find the final velocities of (a) the 2.60-kg ball and of (b) the 7.80-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.

  • A6.65 kg bowling bal moving at 10.0 m/ s colides with a 1.60 kg bowling pin, scattering It with a...

    A6.65 kg bowling bal moving at 10.0 m/ s colides with a 1.60 kg bowling pin, scattering It with a speed of 8.00 m/s and at an angle of 36.0% with respect to the initial direction of the (a) Calculate the final velocity (magnitude in m/s and direction in degrees velocity (magnitude in m/s and direction in degrees counterclockwise from the original direction) of the bowling ball magnitude m/s direction counterdlockwise from the original direction of the bowling ball (b)...

  • 2) A man (m - 75.4 kg) is initially standing at rest. A large, heave ball...

    2) A man (m - 75.4 kg) is initially standing at rest. A large, heave ball (m 18.3 kg) is thrown at him with an initial speed of 4.3 m/s. The ball then bounces off the man goes in the opposite direction at 2.1 m/s. How fast, and in what direction will the man be moving after the collision? (Assume the man and the ball make up an isolated system.) Draw before and after pictures: Write a conservation of momentum...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT