Question

A 7 kg crate is pulled up a 25o incline at a constant velocity. If the...

A 7 kg crate is pulled up a 25o incline at a constant velocity. If the coefficient of friction between the crate and incline surface is 0.61, how much energy would have to be expended to move the crate 1.2 m up the incline? Use g = 9.8 m/s2 and round to 2 significant figures.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 7 kg crate is pulled up a 25o incline at a constant velocity. If the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 9.2 kg crate is pulled up a rough incline with an initial speed of 1.2...

    A 9.2 kg crate is pulled up a rough incline with an initial speed of 1.2 m/s A pulling force of 105N is applied parallel to the surface of the incline, which is at an angle of 21.8 degrees to the horizontal. The coefficient of kinetic friction is .32 and the crate is pulled 7.3 m Find the change in KE of the crate find the speed of the crate after it is pulled 7.3 m

  • An 7.9 kg crate is pulled 5.1 m up a 30° incline by a rope angled...

    An 7.9 kg crate is pulled 5.1 m up a 30° incline by a rope angled 18°above the incline. The tension in the rope is 130 N and the crate's coefficient of kinetic friction on the incline is 0.22 Wr. Wg.W'h= 630.-200,0 J What is the increase in thermal energy of the crate and incline? Express your answer using two significant figures AEth

  • A crate of mass 11.0 kg is pulled up a rough incline with an initial speed...

    A crate of mass 11.0 kg is pulled up a rough incline with an initial speed of 1.40 m/s. The pulling force is 90.0 N parallel to the incline, which makes an angle of 19.6° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.90 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate-incline system due to friction. (c)...

  • A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...

    A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 102 N parallel to the incline, which makes an angle of 19.9° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate–incline system owing to friction. (c)...

  • An 8.3 kg crate is pulled 5.1 m up a 30 degree incline by a rope...

    An 8.3 kg crate is pulled 5.1 m up a 30 degree incline by a rope angled 19 degree above the incline. The tension in the rope is 100 N and the crate's coefficient of kinetic friction on the incline is 0.23. How much work is done by tension, by gravity, and by the normal force? Express your answers using two significant figures. Enter your answers numerically separated by commas. What is the increase in thermal energy of the crate...

  • A crate of mass 10.8 kg is pulled up a rough incline with an initial speed...

    A crate of mass 10.8 kg is pulled up a rough incline with an initial speed of 1.48 m/s. The pulling force is 98 N parallel to the incline, which makes an angle of 19.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.08 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....

  • A crate of mass 10.6 kg is pulled up a rough incline with an initial speed...

    A crate of mass 10.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 106 N parallel to the incline, which makes an angle of 19.4 degree with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.06 m. How much work is done by the gravitational force on the crate? J Determine the increase in internal energy of the crate-incline system owing to friction. J...

  • A crate of mass 10.8 kg is pulled up a rough incline with an initial speed...

    A crate of mass 10.8 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 94 N parallel to the incline, which makes an angle of 20.8° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.94 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate–incline system owing to friction. (J)...

  • A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...

    A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.58 m/s. The pulling force is 94 N parallel to the incline, which makes an angle of 20.2° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. (a) How much work is done by the gravitational force on the crate? 159.82 You have the correct magnitude of the work, but think carefully about the sign....

  • 3. A crate of mass 10 kg is pulled up a rough incline which makes an...

    3. A crate of mass 10 kg is pulled up a rough incline which makes an angle of 20° with the horizontal with the speed 1.5 m/s. The coefficient of kinetic friction is 0.4. Find the distance along the incline that the crate covers before stop. How much energy is lost due to friction?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT