Question

A 1200 kg car rounds a level curve of radius 75 m at 20 m/s. What...

A 1200 kg car rounds a level curve of radius 75 m at 20 m/s. What is the frictional force on the car (assume no banking)?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 1200 kg car rounds a level curve of radius 75 m at 20 m/s. What...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1200 kg car rounds a curve of radius 69 m banked at an angle of...

    A 1200 kg car rounds a curve of radius 69 m banked at an angle of 12°. What is the magnitude of the friction force required for the car to travel at 90 km/h?

  • 5. A car with mass of 1200 kg rounds a flat, unbanked curve with radius of...

    5. A car with mass of 1200 kg rounds a flat, unbanked curve with radius of 250 m. (a) Make a free body diagram of this car (1pts). driver can take the curve without sliding is yos. -18m/s. (6pts) (c) Calculate the coefficient of static friction (u, between tires and road. (6pts) at is the magnitude of the maximum friction force necessary to hold a car on the curve if the maximum speed at which the

  • A 1200 kg car is traveling at 27 m/s around a level curve of radius 110m....

    A 1200 kg car is traveling at 27 m/s around a level curve of radius 110m. What centripetal force must be applied to prevent the car from slipping, and what is the minimum value for the coefficient of friction required to provide the force?

  • 1000 kg car rounds a curve on a flat road of radius 20 m. if the...

    1000 kg car rounds a curve on a flat road of radius 20 m. if the force of friction between dry pavement and tire is 5800 N, what is the maximum speed the car can safely make the turn?

  • A race car rounds a curve at 59 m/s. The radius of the curve is 403...

    A race car rounds a curve at 59 m/s. The radius of the curve is 403 m, and the car's mass is 640 kg. (Assume the car's speed remains constant. Take the radially inward direction to be positive. Indicate the direction with the sign of your answer.) (a) What is the car's (centripetal) acceleration? (b) What is it in g's? (enter value to 3 decimal places) (c) What is the centripetal force acting on the car?

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 140 m, the banking angle is θ = 26°, and the coefficient of static friction is μs = 0.39. Find the minimum speed that the car can have without slipping. A car rounds a curve that is banked inward. The radius of curvature of the road is R 140 m, the banking angle is 26e, and the coefficient of static minimum...

  • A 1200-kg car rounds a circular turn of radius R, toward the right, moving at a...

    A 1200-kg car rounds a circular turn of radius R, toward the right, moving at a constant speed of 10.0 m/s on a horizontal road. Its angular momentum about the center of the turn has magnitude 2.00 - 108kg. ma. a) (4p) What is the direction of the angular momentum of the car? b) (6p) What is the radius of the turn?

  • 5. a- A 1100 kg car rounds a curve of radius 64.0 m banked at an...

    5. a- A 1100 kg car rounds a curve of radius 64.0 m banked at an angle of 14°. What is the maximum speed that the car can reach without skidding if the coefficient of static friction between the tires and the road is 0.56? 5. b- A 1.00-kg ball is tied to a 1.04-m long string is being spun in a vertical circle at a constant speed and with a period of 2.00 s. What is the minimum tension...

  • 2. A car of 1200 kg mass enters an unbanked, curved roadbed of radius 70 m....

    2. A car of 1200 kg mass enters an unbanked, curved roadbed of radius 70 m. The coefficient of static friction between the tires and the roadbed is 0.50 A) If the car is traveling at 10 m/s, what is its centripetal acceleration? B) What is the centripetal force on the car? C) What is the frictional force on the tires? D) What is the maximum speed with which the car can take the turn?

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 142 m, the banking angle is θ = 30°, and the coefficient of static friction is μs = 0.32. Find the minimum speed that the car can have without slipping. I got 36.5196 m/s, which isn't correct.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT