Question

Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that...

Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that nuclei were very small and dense by scattering helium-4 nuclei (4He) from gold-197 nuclei (197Au). The energy of the incoming helium nucleus was 7.06 ✕ 10−13 J, and the masses of the helium and gold nuclei were 6.68 ✕ 10−27 kg and 3.29 ✕ 10−25 kg, respectively (note that their mass ratio is 4 to 197). (Assume that the helium nucleus travels in the +x direction before the collision.)

(a)

If a helium nucleus scatters to an angle of 118° during an elastic collision with a gold nucleus, calculate the helium nucleus' final speed (in m/s) and the final velocity (magnitude in m/s and direction counterclockwise from the +x-axis) of the gold nucleus.

4He speed m/s197Au velocity m/s197Au direction ° counterclockwise from the +x-axis

(b)

What is the final kinetic energy (in J) of the helium nucleus?

J

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in Chemistry) demonstrated that...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in chemistry) demonstrated that nuclei wer...

    Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in chemistry) demonstrated that nuclei were very small and dense by scattering helium-4 nuclei (4He) from gold-197 (197 Au). See the figure below. The energy of the incoming helium nucleus was 9.90 x 10-13 J, and the masses of the helium and gold nuclei were 6.68 x 10-27 and 3.29 x 10-25 kg, respectively (note that their mass ratio is 4 to 197). If a helium nucleus scatters...

  • Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in chemistry) demonstrated that...

    Ernest Rutherford (the first New Zealander to be awarded the Nobel Prize in chemistry) demonstrated that nuclei were very small and dense by scattering helium-4 nuclei ("He) from gold-197 (9Au). See the fiqure below. The energy of the incoming helium nucleus was 8.20 x 10, and the masses of the helium and gold nuclei were 6.68 x 10 and 3.29 x 10 197). If a helium nucleus scatters to an angle of 120° during an elastic collision with a gold...

  • In 1911, Ernest Rutherford discovered the nucleus of the atom by observing the scattering of helium...

    In 1911, Ernest Rutherford discovered the nucleus of the atom by observing the scattering of helium nuclei from gold nuclei. If a helium nucleus with a mass of 6.68 10-27 kg, a charge of +2e, and an initial velocity of 1.18 107 m/s is projected head-on toward a gold nucleus with a charge of +79e, how close will the helium atom come to the gold nucleus before it stops and turns around? (Assume the gold nucleus is held in place...

  • 1. In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which...

    1. In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they scattered alpha particles (nuclei of helium atoms) from thin sheets of gold. An alpha particle, having charge +2e and mass 6.64 x 1027kg, is a product of certain radioactive decays. The results of the experiment led Rutherford to the idea that most of the atom's mass is in a very small nucleus, with electrons in orbit around it. (This is the planetary classic...

  • In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they...

    In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they scattered alpha particles (nuclei of helium atoms) from thin sheets of gold. An alpha particle, having charge +2e and mass 6.64 10-27 kg, is a product of certain radioactive decays. The results of the experiment led Rutherford to the idea that most of an atom's mass is in a very small nucleus, with electrons in orbit around it. Assume an alpha particle, initially very...

  • In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they...

    In 1911, Ernest Rutherford and his assistants Geiger and Marsden conducted an experiment in which they scattered alpha particles (nuclei of helium atoms) from thin sheets of gold. An alpha particle, having charge ÷2e and mass 6.64 × 10-27 kg, is a product of certain radioactive decays. The results of the experiment led Rutherford to the idea that most of an atom's mass is In a very small nucleus, with electrons in orbit around it. Assume an alpha particle, initially...

  • In the early part of the 20th century, Sir Joseph J. Thomson (discoverer of the electron)...

    In the early part of the 20th century, Sir Joseph J. Thomson (discoverer of the electron) proposed a "plum pudding" model of the atom. He believed that the positive charge of the atom was spread out like a pudding and that the negative charges (electrons) were embedded in the pudding like plums. His student Ernest Rutherford performed an experiment in 1911 that disproved the plum pudding model. Rutherford fired a beam of alpha particles (helium nuclei) at a thin metal...

  • Problem 10.23 An alpha particle (a helium nucleus, containing 2 protons and 2 neutrons) starts out...

    Problem 10.23 An alpha particle (a helium nucleus, containing 2 protons and 2 neutrons) starts out with kinetic energy of 9.9 MeV (9.9 x 100 eV), and heads in the +x direction straight toward a gold nucleus (containing 79 protons and 118 neutrons). The particles are initially far apart, and the gold nucleus is initially at rest. Answer the following questions about the collision. What is the initial momentum of the alpha particle? (You may assume its speed is small...

  • Two cars collide at an icy intersection and stick together afterward. The first car has a...

    Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1200 kg and was approaching at 6.00 m/s due south. The second car has a mass of 800 kg and was approaching at 21.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...

  • Two cars collide at an icy intersection and stick together afterward. The first car has a...

    Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1250 kg and was approaching at 6.00 m/s due south. The second car has a mass of 900 kg and was approaching at 17.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT