Question

What percent of the variance in well production is explained by knowing well depth and well...

What percent of the variance in well production is explained by knowing well depth and well age?

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.98711
R Square 0.974387
Adjusted R Square 0.965849
Standard Error 47.4523
Observations 9
ANOVA
df SS MS F Significance F
Regression 2 513960.7 256980.4 114.1262 1.68E-05
Residual 6 13510.32 2251.72
Total 8 527471.1
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -100.805 48.43281 -2.08133 0.082583 -219.316 17.70612 -219.316 17.70612
Well Depth 11.8072 0.790904 14.92874 5.69E-06 9.87193 13.74248 9.87193 13.74248
Well Age -2.23683 0.435949 -5.13093 0.002155 -3.30356 -1.1701 -3.30356 -1.1701
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
What percent of the variance in well production is explained by knowing well depth and well...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • What is the coefficient? What is the standard error? What is the z-statistic? Is the coefficient...

    What is the coefficient? What is the standard error? What is the z-statistic? Is the coefficient sufficiently different from zero? How about one? Explain. SUMMARY OUTPUT Regression Statistics Multiple R 0.58175248 R Square 0.33843594 Adjusted R S 0.31393357 Standard Err 1.1991813 Observations 29 ANOVA df SS MS Significance F 0.000932269 Regression 1 19.86268888 19.86268888 13.8123745 Residual 38.82696629 27 1.438035789 Total 58.68965517 28 Coefficients Standard Error P-value t Stat Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -0.0202247 0.223805467 -0.090367404...

  • Hi I was wondering if i could have some help with some distribution questions. 1. show...

    Hi I was wondering if i could have some help with some distribution questions. 1. show where zero and one fall on a normal distribution based on thedata. 2.is the coefficient sufficiently different than zero? explain 3. is the coefficient sufficiently different than one? explain. Regression Statistics Multiple R 0.806174983 0.649918103 R Square Adjusted R Square Standard Error Observations 0.636952107 13.57635621 29 ANOVA Significance F E SS MS df 9238.877183 9238.877 50.12481 1.30123E-07 Regression Residual 4976.571093 184.3174 27 14215.44828 Total...

  • Calculate the following statistics given the existing information (1 point per calculation): Regression Statistics Multiple R...

    Calculate the following statistics given the existing information (1 point per calculation): Regression Statistics Multiple R R Square Adjusted R Square 0.559058 Standard Error Observations 30 ANOVA df SS MS F Significance F Regression 2 3609132796 19.38411515 6.02827E-06 Residual 27 2513568062 Total 29 6122700857 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept -15800.8 57294.51554 -0.27578 0.784814722 CARAT 12266.83 1999.250369 6.135715 1.48071E-06 DEPTH 156.686 928.9461882 0.168671 0.867312915 Additionally interpret your results. Be sure to comment on Accuracy, significance...

  • Calculate the 95% prediction interval of y when x=5 using the 2000 pairs Mean of x...

    Calculate the 95% prediction interval of y when x=5 using the 2000 pairs Mean of x = 4.51 Regression Statistics Multiple R 0.012848 R Square 0.000165 Adjusted R Square -0.00034 Standard Error 2.869737 Observations 2000 ANOVA df SS MS F Significance F Regression 1 2.716416 2.716416 0.329847 0.565814 Residual 1998 16454.31 8.235388 Total 1999 16457.02 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 4.509054 0.119572 37.70997 1.7E-235 4.274555 4.743552574 4.274555 4.743553 X 0.012884...

  • Regression Statistics Multiple R 0.896755 R Square 0.80417 Adjusted R Square 0.767452 Standard Error 51.04855 Observations...

    Regression Statistics Multiple R 0.896755 R Square 0.80417 Adjusted R Square 0.767452 Standard Error 51.04855 Observations 20 ANOVA df SS MS F Significance F Regression 3 171220.5 57073.49 21.90118 6.56E-06 Residual 16 41695.28 2605.955 Total 19 212915.8 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 427.1938 59.60143 7.167509 2.24E-06 300.8444 553.5432 300.8444 553.5432 Temp (deg) -4.58266 0.772319 -5.93364 2.1E-05 -6.21991 -2.94542 -6.21991 -2.94542 Insulation (ins.) -14.8309 4.754412 -3.11939 0.006606 -24.9098 -4.75196 -24.9098 -4.75196...

  • In relation to the below output from the Regression Analysis of the S&P/ASX200 Index (X) and...

    In relation to the below output from the Regression Analysis of the S&P/ASX200 Index (X) and from the company ABC Shares derived from weekly data over a 12 month period, can you please explain the key measures and what this all means eg. Number of Observations, R Square, Value of the Slope and the P-Value of the Slope etc. SUMMARY OUTPUT Regression Statistics Multiple R 0.045274332 R Square 0.002049765 Adjusted R Square -0.01790924 Standard Error 0.023996449 Observations 52 ANOVA df...

  • Dep.= % WRK Indep.= % MGT SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R...

    Dep.= % WRK Indep.= % MGT SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Significance df SS MS F F Regression 102.1488 148.9539 Residual Total 12.0000 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept % MGT 0.4543 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 67.0000 67.8474 65.8779 69.8169 72.0000 70.1189 68.2003 72.0375 76.0000 71.9361 69.7884 74.0838 Dep.= % MGT...

  • We are doing regression analysis for business analytics class and I am having a hard time reading...

    We are doing regression analysis for business analytics class and I am having a hard time reading this data. Please help. SUMMARY OUTPUT Regression Statistics Multiple R 0.999964 R Square 0.999928 Adjusted R Square 0.9999248 Standard Error 267.074107 Observations 48 ANOVA df SS MS F Significance F Regression 2 44576676715 2.23E+10 312474.2 6.1672E-94 Residual 45 3209786.045 71328.58 Total 47 44579886501 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -42159057 121894.4727 -345.865 1.04E-78 -42404564.6...

  • Multiple R 0.800223 R Square 0.640357 Adjusted R Square 0.610387 Standard Error 5.793039 Observations 40 ANOVA...

    Multiple R 0.800223 R Square 0.640357 Adjusted R Square 0.610387 Standard Error 5.793039 Observations 40 ANOVA df SS MS F Significance F Regression 3 2151.13 717.0433 21.36645 4.02E-08 Residual 36 1208.135 33.5593 Total 39 3359.265 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 6.702471 7.166119 0.9353 0.355866 -7.83109 21.23603 -7.83109 21.23603 Price Discount (in %) 0.341666 0.068923 4.957206 1.71E-05 0.201884 0.481449 0.201884 0.481449 Radio Exp (in $1,000) 6.062389 1.626002 3.728403 0.000661 2.764705 9.360073...

  • Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 0.72 0.51 0.38 99.45...

    Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 0.72 0.51 0.38 99.45 6 Anova df SS MS F Significance F 0.11 1 41497.60 41497.60 4.20 Regression Residual 4 39561.23 9890.31 Total 5 81058.83 t Stat P-value Coefficients Standard Error 1423.60 564.95 2.52 0.07 Intercept X Variable 1 Lower 95% Upper 95% -144.96 2992.16 -0.11 0.72 Lower 95.0% Upper 95.0% -144.96 2992.16 -0.11 0.72 0.31 0.15 2.05 0.11 Assume that Craig's Fresh and Hot Pancake Restaurant does...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT