Question

Ex. 830. Design a proportional controller (Kp) cascaded with the plant: (s+10)/( (s+ 3) (s+ 9)...

Ex. 830. Design a proportional controller (Kp) cascaded with the plant:
  (s+10)/( (s+ 3) (s+ 9) (s+14) ) within a unity feedback system
  so that the dominant poles result in a 32% overshoot step response.
  Find Kp, zeta, wn, wd, Ts, Tp, the error constant (Kp_error) and corresponding
  SS error.  Note: Kp_error is different from Kp in the PID-TF. ans:8
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Ex. 830. Design a proportional controller (Kp) cascaded with the plant: (s+10)/( (s+ 3) (s+ 9)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Design of PID compensator S. Design of PID (Proportional-plus-Integral and Derivative) Compensator ds/i (st3)(s+6 s+10) and...

    Design of PID compensator S. Design of PID (Proportional-plus-Integral and Derivative) Compensator ds/i (st3)(s+6 s+10) and unity feedback Design a PID s+10) An uncompensated system has a gain controller so that the system can operate with a peak time that is two thirds that of the uncompensated system at 20% overshoot and with zero steady-state error for a step input. system has a gain Uncompensated system Compensated system K (s+8 G(s) = (s+3)(s+6)(s+10) ,H(s) = 1 20% OS; desired T,-23a...

  • Question: CODE: >> %% PID controller design Kp = 65.2861; Ki = 146.8418; Kd = 4.0444;...

    Question: CODE: >> %% PID controller design Kp = 65.2861; Ki = 146.8418; Kd = 4.0444; Gc = pid(Kp,Ki,Kd); % close-loop TF T = feedback(G*Gc,1); %% checking the design obejective a_pid = stepinfo(T); % Settling Time tp_pid = a_pid.SettlingTime % Overshhot OS_pid = a_pid.Overshoot %% steady-state error [yout_pid,tout_pid] = lsim(T,stepInput,t); % steady-state error ess_pid = stepInput(end) - yout_pid(end); >> %% Effect of P in G Kp = 65.2861; Ki = 0; Kd = 0; Gc = pid(Kp,Ki,Kd); % close-loop TF...

  • I have no more posting for this month, please solve these for me thanks 1. Given...

    I have no more posting for this month, please solve these for me thanks 1. Given the following unity feedback system where s+z s2 (s + 10) and the controller is a proportional controller Ge = K, do the following: a. If z = 2, find K so that the damped frequency of the oscillation of the transient response is 5 rad/s. b. The system is to be redesigned by changing the values of z and K. If the new...

  • Consider a unity-feedback control system with a PI controller Gpr(s) and a plant G(s) in cascade. In particular, the plant transfer function is given as 2. G(s) = s+4, and the PI controller trans...

    Consider a unity-feedback control system with a PI controller Gpr(s) and a plant G(s) in cascade. In particular, the plant transfer function is given as 2. G(s) = s+4, and the PI controller transfer function is of the forrm KI p and Ki are the proportional and integral controller gains, respectively where K Design numerical values for Kp and Ki such that the closed-loop control system has a step- response settling time T, 0.5 seconds with a damping ratio of...

  • Required Plant Transfer Function! 사, (H183) 3. Design the proportional (Kp) and derivative (Ka) ...

    I need help with the following: Required Plant Transfer Function! 사, (H183) 3. Design the proportional (Kp) and derivative (Ka) coefficients for a controller in Propotional- Derivative with Derivative on Output Only (PD-DOO) form. (Fig. 4). T(t) Gp(s) Figure 4: Proportional-Derivative closed loop control with Derivative-on-Output-Only Derive the closed loop transfer function, G2(s). Let the desired specifications of the compensated, closed loop system be wn 12 and-0.6 -In this configuration the known parameters are J, c, wn and Ç. Determine...

  • 3. The following step response of system with a proportional controller when Kp is set 10...

    3. The following step response of system with a proportional controller when Kp is set 10 and Ki=Kd=0. Design a PID controller using Ziegler-Nichols ultimate cycle tuning method. Show all the formulas that you are using. a) (5 points) Tu b) (5 points) Ku d) (10 points) Kir 1 2 3 4 5 6 e) (10 points) Kd=

  • Consider the same plant G(s) Design a controller so that if you desire an angle of...

    Consider the same plant G(s) Design a controller so that if you desire an angle of r 1 rad, s(s+10) (s+20) (R the actual angle of the motor y(t) has an overshoot less than or equal to 20% and a settling time less than or equal to 0.3s as it is settling down to the steady state angle. Write down the steps you followed in the sisotool (or otherwise), include: i. ii. iii. iv. Your error calculations and calculations for...

  • QUICK UPVOTE: As a control system engineer you have been asked to design a controller that...

    QUICK UPVOTE: As a control system engineer you have been asked to design a controller that would improve the error and the transient response for the unity feedback system below. The proposed solution must be cost-effective, so consider a passive network-based compensator. The transient response of the closed-loop transfer function to a ramp input has a 30% overshoot (%OS = 30) and a settling time Ts= 2.73 seconds. You need to decrease the peak time by a factor of 2,...

  • 5.4 Consider the system with a required steady-state error of 20%, K(s + 2) s(s +3s + 5) and an a...

    5.4 Consider the system with a required steady-state error of 20%, K(s + 2) s(s +3s + 5) and an adjustable PI controller zero location. KL(s) Show that the corresponding closed-loop characteristic equation is given by s+ a Next, rewrite the equation as 1 + KG(s0 where K K K.a is constant, and Gf(s) is a function of s, and ex amine the effect of shifting the zero on the closed-loop poles. (a) Design the system for a dominant second-order...

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root lo...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain Kas a variable. s(s+4) (s2+4s+20) Determine asymptotes, centroid, breakaway point, angle of departure, and the gain at which root locus crosses ja-axis. A control system with type-0 process and a PID controller is shown below. Design the [8 parameters of the PID controller so that the following specifications are satisfied. =100 a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT