Question

You are designing the section of a roller coaster ride shown in the figure. Previous sections...

You are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 14.3 m/s at the top of the incline, which is h=37.9 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government's safety regulations state that the riders' centripetal acceleration should be no more than n=1.61 g at the top of the hump and no more than N=5.13 g at the bottom of the loop. For this initial phase of your design, you decide to ignore the effects of friction and air resistance.

1. What is the minimum radius you can use for the semi-circular hump? (in meters)

2.What is the minimum radius you can use for the vertical loop? (in meters)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
You are designing the section of a roller coaster ride shown in the figure. Previous sections...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • You are designing the section of a roller coaster ride shown in the figure. Previous sections...

    You are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 16.1 m/s at the top of the incline, which is 37.1 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government's safety regulations state that the riders' centripetal acceleration should be no more than n 1.69 g at the top of the hump and no...

  • You are designing the section of a roller coaster ride shown in the figure. Previous sections...

    You are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 14.9 m/s at the top of the incline, which is 38.3 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government's safety regulations state that the riders' centripetal acceleration should be no more than n 1.57 g at the top of the hump and no...

  • Variation in your apparent weight is desirable when you ride a roller coaster; it makes the...

    Variation in your apparent weight is desirable when you ride a roller coaster; it makes the ride fun. However, too much variation over a short period of time can be painful. For this reason, the loops of real roller coasters are not simply circles like (Figure 1) . A typical loop is shown in(Figure 2) . The radius of the circle that matches the track at the top of the loop is much smaller than that of a matching circle...

  • You are designing a new roller-coaster. The main feature of this particular design is to be...

    You are designing a new roller-coaster. The main feature of this particular design is to be a vertical circular loop-the-loop where riders will feel like they are being squished into their seats even when they are in fact upside-down (at the top of the loop). The coaster start at rest a height of 80m above the ground, speeds up as it descends to ground level, and then enters the loop which has a radius of 20m. Suppose a rider is...

  • A roller coaster has a “hump” and a “loop” for riders to enjoy (see picture). The...

    A roller coaster has a “hump” and a “loop” for riders to enjoy (see picture). The top of the hump has a radius of curvature of 12 m and the loop has a radius of curvature of 15 m. (a) When going over the hump, the coaster is traveling with a speed of 9.0 m/s. A 100-kg rider is traveling on the coaster. What is the normal force of the rider’s seat on the rider when he is at the...

  • Part of a roller-coaster ride involves coasting down an incline and entering a loop 7.10 m...

    Part of a roller-coaster ride involves coasting down an incline and entering a loop 7.10 m in diameter. For safety considerations, the roller coaster's speed at the top of the loop must be such that the force of the seat on a rider is equal in magnitude to the rider's weight. From what height above the bottom of the loop must the roller coaster descend to satisfy this requirement? m 1 -11 points SerCP8 7.P.019. My Notes Ask Your Teacher...

  • Part of a roller coaster ride involves coasting down an incline and entering a loop 6.40...

    Part of a roller coaster ride involves coasting down an incline and entering a loop 6.40 m in diameter. For safety considerations, the roller coaster's speed at the top of the loop must be such that the force of the seat on a rider is equal in magnitude to the rider's weight. From what height above the bottom of the loop must the roller coaster descend to satisfy this requirement?

  • Part of a roller-coaster ride involves coasting down an incline and entering a loop 8.60 m...

    Part of a roller-coaster ride involves coasting down an incline and entering a loop 8.60 m in diameter. For safety considerations, the roller coaster's speed at the top of the loop must be such that the force of the seat on a rider is equal in magnitude to the rider's weight. From what height above the bottom of the loop must the roller coaster descend to satisfy this requirement? m

  • Problem 1 You are designing a roller coaster, shown in the figure below. An empty car...

    Problem 1 You are designing a roller coaster, shown in the figure below. An empty car has a mass of 120 kg. The radius of the vertical loop in the track is 12.0 m and the bottom of the loop is 5.0 m above the ground. Assuming the roller coaster is frictionless, how high must the car initially climb above the ground (point A) such that the speed of the car is 25.0 m/s at the top of the loop...

  • As part of the ride, a roller coaster crests a hill that can be approximated as...

    As part of the ride, a roller coaster crests a hill that can be approximated as a circle with a radius of 30.0 meters. How fast would the coaster need to be traveling at the top of the hill if the safety harness in the car needed to exert a force that held a 80.0-kg rider down and had a magnitude of 250 N?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT