Question

A 0.190 kg plastic ball moves with a velocity of 0.30 m/s. It collides with a...

A 0.190 kg plastic ball moves with a velocity of 0.30 m/s. It collides with a second plastic ball of mass 0.107 kg, which is moving along the same line at a speed of 0.10 m/s. After the collision, both balls continue moving in the same, original direction, and the speed of the 0.107 kg ball is 0.26 m/s. What is the new velocity of the first ball?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

m1 v1i + m2 v2i = m1 v1f + m2 v2f

m1 v1f = m1 v1i + m2 v2i - m2 v2f

v1f = [m1 v1i + m2 v2i - m2 v2f] / m1

= [(0.19 * 0.30) + (0.107 * 0.1) - (0.107 * 0.26)] / [0.190]

new velocity of the first ball = 0.209 m/s

Add a comment
Know the answer?
Add Answer to:
A 0.190 kg plastic ball moves with a velocity of 0.30 m/s. It collides with a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.25 kg ball moving at a speed of 3 m/s, along the positive x-axis, strikes...

    A 0.25 kg ball moving at a speed of 3 m/s, along the positive x-axis, strikes a stationary horizontal ball of mass 0.30 kg. (a) If the collision is perfectly inelastic, what is the velocity and direction of the balls? (b) If the second ball moves at a rate of 1 m/s towards the positive x-axis, what is the velocity and direction of the first 2. ball after collision?

  • A 2.0 kg ball moving east with a velocity of 5.0 m/s collides with a 8.0...

    A 2.0 kg ball moving east with a velocity of 5.0 m/s collides with a 8.0 kg ball moving west with velocity 2.0 m/s. After collision, the ball of mass 2.0 kg moves with a velocity of 2.0 m/s towards east, what is the velocity of the second ball?

  • 5. A 0.06 kg tennis ball, moving with a speed of 5.0 m/s, collides a 0.09...

    5. A 0.06 kg tennis ball, moving with a speed of 5.0 m/s, collides a 0.09 kg ball initially moving in the same direction at a speed of 3.0 m/s. Assuming an elastic collision, determine the velocities of balls after the collision.

  • A 0.190 kg billiard ball that is moving at 2.10 m/s strikes the bumper of a...

    A 0.190 kg billiard ball that is moving at 2.10 m/s strikes the bumper of a pool table and bounces straight back at 1.68 m/s (80% of its original speed). The collision lasts 0.0110 s. (Assume that the ball moves in the positive direction initially.) a) Calculate the average force (in N) exerted on the ball by the bumper. (Indicate the direction with the sign of your answer. b) How much kinetic energy in joules is lost during the collision?...

  • A 2 kg ball moving at 4 m/s to the right collides with a 3.0 kg...

    A 2 kg ball moving at 4 m/s to the right collides with a 3.0 kg ball moving at 2.0 m/s to the left. A) What is the total momentum before the collision? B) After the collision, if the first ball now moves at 1.2 m/s to the left, what is the momentum of the second ball? C) Then, using your answer for B, find the velocity of the second ball after the collision. (right is + left is -)...

  • A 6.00 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin,...

    A 6.00 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin, scattering it with a speed of 8.00 m/s and at an angle of 38.5 with respect to the initial direction of the bowling ball (*) Calculate the final velocity (magnitude in mys and direction in degrees counterclockwise from the original direction of the bowling ball magnitude m/s direction counterclockwise from the original direction of the bowing ball (b) Ignoring rotation, what was the original...

  • A 1.20-kg ball, moving to the right at a velocity of +2.85 m/s on a frictionless...

    A 1.20-kg ball, moving to the right at a velocity of +2.85 m/s on a frictionless table, collides head-on with a stationary 6.20-kg ball. Find the final velocities of (a) the 1.20-kg ball and of (b) the 6.20-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.

  • A 2.60-kg ball, moving to the right at a velocity of +2.54 m/s on a frictionless...

    A 2.60-kg ball, moving to the right at a velocity of +2.54 m/s on a frictionless table, collides head-on with a stationary 7.80-kg ball. Find the final velocities of (a) the 2.60-kg ball and of (b) the 7.80-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.

  • A ball of mass 0.320 kg that is moving with a speed of 5.7 m/s collides...

    A ball of mass 0.320 kg that is moving with a speed of 5.7 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.4 m/s . Calculate the velocity of the target ball after the collision. Calculate the mass of the target ball.

  • A billiard ball with a mass of 0.15 kg is moving with a velocity of <...

    A billiard ball with a mass of 0.15 kg is moving with a velocity of < 5, 0, 0 > m/s. It collides with a 2nd billiard ball of mass 0.20 kg initially moving at < -7, 0, 0 > m/s. After the collision, you observe the 2nd billiard ball moving at < 0.13, 0, 0 > m/s. a) What is the velocity of the 0.15 kg billiard ball after the collision? b) What is the vector change in momentum...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT