Question

Determine the transfer function for a 5-tap FIR highpass filter with a lower cutoff frequency of...

Determine the transfer function for a 5-tap FIR highpass filter with a lower cutoff
frequency of 3 kHz and a sampling rate of 8 kHz using the frequency sampling
method.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Determine the transfer function for a 5-tap FIR highpass filter with a lower cutoff frequency of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Design a 31-tap highpass FIR filter whose cutoff frequency is 2,500 Hz using the following window...

    Design a 31-tap highpass FIR filter whose cutoff frequency is 2,500 Hz using the following window functions. Assume that the sampling frequency is 8,000Hz. a. Hanning window function c. Blackman window function

  • 7.3. Design a 5-tap FIR lowpass filter with a cutoff frequency of 100 Hz and a...

    7.3. Design a 5-tap FIR lowpass filter with a cutoff frequency of 100 Hz and a sampling rate of 1,000 Hz using a a. rectangular window function b. Hamming window function Determine the transfer function and difference equation of the designed FIR system, and compute and plot the magnitude frequency response for ?--0, ?/4, ?/2, 3r/4, and ? radians.

  • Design a 5-tap FIR bandpass filter

    Design a 5-tap FIR bandpass filter with a lower cutoff frequency of1,600 Hz, an upper cutoff frequency of 1,800 Hz, and a sampling rateof 8,000 Hz using a. rectangular window functionb. Hamming window function.Determine the transfer function and difference equation of the designedFIR system, and compute and plot the magnitude frequency responsefor Ω= 0, π/4, π/2, 3π/4, and π radians.PLEASE SHOW STEPS CLEARLY

  • 7.29. Design a 41-tap bandpass FIR filter with lower and upper cutoff frequencies of 2,500 Hz...

    7.29. Design a 41-tap bandpass FIR filter with lower and upper cutoff frequencies of 2,500 Hz and 3,000 Hz, respectively, using the following window functions. Assume a sampling frequency of 8,000 Hz. a. Hanning window function b. Blackman window function. List the FIR filter coefficients and plot the frequency responses for each design. 7.30 Design a 41-tap band reject FIR filter with cutoff frequencies of 2,500 Hz and 3,000 Hz, respectively, using the Hamming window function. Assume a sampling frequency...

  • 12. Design a fourth order, 2 dB Chebyshev highpass filter with a cutoff frequency of 2.4...

    12. Design a fourth order, 2 dB Chebyshev highpass filter with a cutoff frequency of 2.4 kHz a. Draw the circuit, labeling Vin, Yout, and all component values. (14 points) and a passband gain of 0 dB. Use capacitor values of 3300 pF an approximation of the Bode plot of the magnitude transfer function IH(ia) in dB, İndicating the ripple, the cutoff frequency, and the approximate filter roll-off in dB/decade. Note, this does not reguire solving for the function. (6...

  • Using the windowing functions discussed in class, design a low-pass FIR filter with a cutoff freq...

    Using the windowing functions discussed in class, design a low-pass FIR filter with a cutoff frequency of 2 kHz, a minimum stop band attenuation of 40 dB, and a transition width of 200Hz. The sampling frequency is 10kHz. 1. Using the windowing functions discussed in class, design a low-pass FIR filter with a cutoff frequency of 2 kHz, a minimum stop band attenuation of 40 dB, and a transition width of 200 Hz. The sampling frequency is 10 kHz 2....

  • Styles Paragraph 6. Given the difference equation y(n)-x(n-1)-0.75y(n-1)-0.125(n-2) a. Use MATLAB function filterl) and filticl) to...

    Styles Paragraph 6. Given the difference equation y(n)-x(n-1)-0.75y(n-1)-0.125(n-2) a. Use MATLAB function filterl) and filticl) to calculate the system response y(n)for n 0, 1, 2, 3, 4 with the input of x(n (0.5) u(n)and initial conditions x(-1)--1, y(-2) -2, and y(-1)-1 b. Use MATLAB function filter!) to calculate the system response y(n) for n-0, 1, 2, 3,4 with the input of x(n) (0.5)"u(n)and zero initial conditions x(-1)-0, (-2)-0, and y(-1)-0 Design a 5-tap FIR low pass filter with a cutoff...

  • answer fast 2- Design an RLC Band Reject filter with a lower cutoff frequency of 2...

    answer fast 2- Design an RLC Band Reject filter with a lower cutoff frequency of 2 kHz and an upper cutoff frequency of 2.1 kHz. Consider a capacitor C = 3.7nF and calculate L, C, and Q. a) Give the Transfer function of this filter. b) Find the central frequency f., the bandwidth (BW) in Hz, and the quality factor (Q). c) Sketch the frequency response of this filter only magnitude.

  • Question 3 a) A linear-phase, Finite Impulse Response (FIR) digital filter with the transfer func...

    Thanks Question 3 a) A linear-phase, Finite Impulse Response (FIR) digital filter with the transfer function H() shown as follow is desired: (4 marks) (3 marks) iii) Based on (a)(ii), determine the truncated impulse response ha(n) for a 5-tap FIR filter by i) Sketch the spectrum of the transfer function H (w). ii) Determine the impulse response h(n) from H() using rectangular window method. (6 marks) iv) Calculate all the filter coefficient of ha (n). (5 marks) Question 3 a)...

  • In this problem, you are asked to design a length-16 FIR low-pass filter with cutoff frequency...

    In this problem, you are asked to design a length-16 FIR low-pass filter with cutoff frequency ωc = π 2 radians, using the window design method. 2. [FIR Filter Design) In this problem, you are asked to design a length-16 FIR low-pass filter with cutoff frequency We = radians, using the window design method. (a) Find an expression for the coefficients {hn}n using a truncation (rectangular) window. (b) Find an expression for the coefficients {n}=l using a Hamming window. (c)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT