Question

Match the following: The Process of copying a virtual page from disk to a page frame...

Match the following:

The Process of copying a virtual page from disk to a page frame in main memory

Answer choose from: physical address, Page fault, Paging, fragmentation, Page frames, Mapping

The equal size chunks or blocks into which main memory is divided.

Answer choose from: physical address, Page fault, Paging, fragmentation, Page frames, Mapping

The mechanism by which virtual address are translated into physical ones

Answer choose from: physical address, Page fault, Paging, fragmentation, Page frames, Mapping
0 0
Add a comment Improve this question Transcribed image text
Answer #1
The process of copying a virtual page from disk to a page frame in main memory
Paging

The equal size chunks or blocks into which main memory is divided.
Page frames

The mechanism by which virtual address are translated into physical ones
Mapping
Add a comment
Know the answer?
Add Answer to:
Match the following: The Process of copying a virtual page from disk to a page frame...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 1 Which of the following is true about virtual addresses? Virtual addresses for the same...

    Question 1 Which of the following is true about virtual addresses? Virtual addresses for the same physical memory location may differ from process to process Virtual addresses are synonymous with physical addresses Virtual addresses always refer to locations on disk Virtual addresses for the same physical memory location may differ from thread to thread Question 2 How do pages and frames relate to each other? A page holds words while a frame holds pictures A frame is a larger structure...

  • For part A: convert the virtual address into page numbers and offset, and then into hexadecimal...

    For part A: convert the virtual address into page numbers and offset, and then into hexadecimal numbers. Redraw the page table showing which pages were referenced and in any needed to be loaded into memory and what frame was selected. Assume frames 6,7,11,and 12 are available. 9.22 The page table shown in Figure 9.32 is for a system with 16-bit virtual and physical addresscs and with 4,096-byte pages. The reference bit is been referenced. Periodically, a thread zeroes out all...

  • 18. You have a byte-addressable virtual memory system with a two-entry TLB, a 2-way set associati...

    18. You have a byte-addressable virtual memory system with a two-entry TLB, a 2-way set associative cache, and a page table for a process P. Assume cache blocks of 8 bytes and page size of 16 bytes. In the system below, main memory is divided into blocks, where each block is represented by a letter. Two blocks equal one frame. Given the system state as depicted above, answer the following questions: a) How many bits are in a virtual address...

  • Problem 6 (13 points) The page table below is for a system with 16-bit virtual as well as physica...

    Problem 6 (13 points) The page table below is for a system with 16-bit virtual as well as physical addresses and with 4,096-byte pages. The reference bit is set to 1 when the page has been referenced. Periodically, a thread zeroes out all values of the reference bit. A dash for a page frame indicates the page is not in memory. The LRll pagg-replacement algorithm is used. The numbers are given in decimal Page Frame eferepceit 14 10 13 15...

  • Number Name 3. Assuming no page fault on a page table access, what is the processor...

    Number Name 3. Assuming no page fault on a page table access, what is the processor memory access time for the system depicted in the above figure, for a physical memory with 50ns read/write times? 4. Now, assume that the memory system has a translation look-aside buffer (TLB). The TLB requires 10 ns to determine a hit or mess. The physical memory system has an access time of 50ns. You may assume that page fault rate for the application is...

  • 1) The following page table illustrates a system with 12-bit virtual and physical addresses and 256-byte...

    1) The following page table illustrates a system with 12-bit virtual and physical addresses and 256-byte pages. Free page frames are to be allocated in the order9 F, D. A dash for a page frame indicates that the page is not in memory. (4 points) Page Page-Frame 0x4 OxB 0 2 4 0x2 0x0 0xC 7 Convert the following virtual addresses to their equivalent physical addresses irn hexadecimal. All numbers are given in hexadecimal. In the case of a page...

  • Problem 6 (13 points) The page table below is for a system with 16-bit virtual as...

    Problem 6 (13 points) The page table below is for a system with 16-bit virtual as well as physical addresses and with 4,096-byte pages. The reference bit is set to 1 when the page has been referenced. Periodically, a thread zeroes out all values of the reference bit. A dash for a page frame indicates the page is not in memory. The LRll pagg-replacement algorithm is used. The numbers are given in decimal Page Frame eferepceit 14 10 13 15...

  • Exercise l: Suppose that we have a virtual memory space of 28 bytes for a given process and physical memory of 4 page frames. There is no cache. Suppose that pages are 32 bytes in length. 1) How...

    Exercise l: Suppose that we have a virtual memory space of 28 bytes for a given process and physical memory of 4 page frames. There is no cache. Suppose that pages are 32 bytes in length. 1) How many bits the virtual address contain? How many bits the physical address contain? bs Suppose now that some pages from the process have been brought into main memory as shown in the following figure: Virtual memory Physical memory Page table Frame #...

  • ​Suppose you have a byte-addressable virtual address memory system with 8 virtual pages of 64 bytes each

    Suppose you have a byte-addressable virtual address memory system with 8 virtual pages of 64 bytes each, and 4-page frames. Assuming the following page table, answer the questions below: Page #Frame #Valid Bit0111312-03014215-06-07-0a) How many bits are in a virtual address? b) How many bits are in a physical address? c) What physical address corresponds to the following virtual addresses (if the address causes a page fault, simply indicate this is the case)? 1) Ox00 2) 0x44 3) OxC2 4) 0x80

  • A system implements a paged virtual address space for each process using a one-level page table....

    A system implements a paged virtual address space for each process using a one-level page table. The maximum size of virtual address space is 8MB. The page table for the running process includes the following valid entries (the -> notation indicates that a virtual page maps to the givenpage frame, that is, it is located in that frame): Virtual page 2 -> Page frame4 Virtual page 4 -> Page frame 9 Virtual page 1 -> Page frame2 Virtual page 3...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT