Question

Suppose that a region with a uniform magnetic field B also has a uniform electric field...

Suppose that a region with a uniform magnetic field B also has a uniform electric field E perpendicular to the magnetic field, an arrangement called crossed fields. Show that for a charged particle moving in such crossed fields in a direction perpendicular to both E and B, the electric force cancels the magnetic force, provided the particle has a speed

v= E/B

If the magnetic field is in the vertical upward direction and the electric field is in the northward direction, what must be the direction of motion of the charged particle to produce this cancellation? Crossed fields are used in velocity selectors, or velocity filters. In these devices, a beam of charged particles if aimed into a region of crossed fields, and this deflects particles out of the beam, except for those particles that have the critical velocity v = E/B

Please show your work!

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Suppose that a region with a uniform magnetic field B also has a uniform electric field...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A uniform electric field of magnitude 148 kV/m is directed upward in a region of space....

    A uniform electric field of magnitude 148 kV/m is directed upward in a region of space. A uniform magnetic field of magnitude 0.42 T perpendicular to the electric field also exists in this region. A beam of positively charged particles travels into the region. Determine the speed of the particles at which they will not be deflected by the crossed electric and magnetic fields. (Assume the beam of particles travels perpendicularly to both fields.) m/s

  • A positively charged particle moves in the +x direction in a region of uniform magnetic field...

    A positively charged particle moves in the +x direction in a region of uniform magnetic field B directed into the page as shown. The resultant force on the particle can be made qual to zero by the application of a uniform electric field in the what direction? Please show all work and provide an explanation!! a. +y direction b. -y direction c. +x direction d. -x direction e. direction perpendicular to and out of the page.

  • Crossed electric and magnetic fields are established over a certain region. The magnetic field is 0.6000...

    Crossed electric and magnetic fields are established over a certain region. The magnetic field is 0.6000 T vertically downward. The electric field is 2.000 x 106 V/m horizontally east. An electron, traveling horizontally northward, experiences zero resultant force from these fields and so continues in a straight line. What is the electron's speed? m/s

  • A charged particle moves through a region of space that has both a uniform electric field...

    A charged particle moves through a region of space that has both a uniform electric field and a uniform magnetic field. What is the condition for these fields in order for the particle to move through this region at a constant velocity? Does the answer depend on the sign of the particle’s electric charge?

  • Velocity Selector-multiple choice

    The Velocity SelectorIn experiments where all the charged particles in a beam are required to have the same velocity (for example, when entering a mass spectrometer), scientists use a velocity selector. A velocity selector has a region of uniform electric and magnetic fields that are perpendicular to each other and perpendicular to the motion of the charged particles. Both the electric and magnetic fields exert a force on the charged particles. If a particle has precisely the right velocity, the...

  • 1. Which of the following charged particles moving in a static uniform magnetic field feels no...

    1. Which of the following charged particles moving in a static uniform magnetic field feels no force? A. an electron with velocity opposite the direction of the magnetic field B. an electron with velocity perpendicular to the magnetic field C. a proton with velocity perpendicular to the magnetic field D. a proton with velocity making a 45 degree angle with the magnetic field 2. An electron enters a region where a uniform magnetic field points in the +z direction. If...

  • The velocity selector in in a mass spectrometer consists of a uniform magnetic field oriented at...

    The velocity selector in in a mass spectrometer consists of a uniform magnetic field oriented at 90 degrees to a uniform electric field so that a charge particle entering the region perpendicular to both fields will experience an electric force and a magnetic force that are oppositely directed. If the uniform magnetic field has a magnitude of 11.2 mT, then calculate the magnitude of the electric field that will cause a proton entering the velocity selector at 16.1 km/s to...

  • A charged particle is moving in a uniform, constant magnetic field. Which one of the following...

    A charged particle is moving in a uniform, constant magnetic field. Which one of the following statements concerning the magnetic force exerted on the particle is false It does no work on the particle. It increases the speed of the particle. It changes the velocity of the particle. It can act only on a particle in motion. It does not change the kinetic energy of the particle. A circular current loop with radius of 0.100 m is located in the...

  • Crossed E and B Fields. A particle with initial velocity V = (5.85 * 10^3 m/s)...

    Crossed E and B Fields. A particle with initial velocity V = (5.85 * 10^3 m/s) j enters a region of uniform electric and magnetic fields. The magnetic field in the region is B= -(1.350 T) k . Calculate the magnitude and direction of the electric field in the region if the particle is to pass through undeflected, for a particle of charge (a) +0.640 nC and (b) -0.320 nC. You can ignore the weight of the particle.

  • Consider a magnetic force acting on an electric charge in a uniform magnetic field. Which of...

    Consider a magnetic force acting on an electric charge in a uniform magnetic field. Which of the following statements are true? A magnetic force is exerted on an electric charge moving through a uniform magnetic field. The direction of the magnetic force acting on a moving charge in a magnetic field is perpendicular to the direction of the magnetic field. The direction of the magnetic force acting on a moving electric charge in a magnetic field is perpendicular to the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT