Question

A mass oscillates on a horizontal spring with a maximum speed of 8m/s. If the spring...

A mass oscillates on a horizontal spring with a maximum speed of 8m/s. If the spring constant is decreased by a factor of 2, the maximum speed of the oscillation will be

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The speed in oscillation

Add a comment
Know the answer?
Add Answer to:
A mass oscillates on a horizontal spring with a maximum speed of 8m/s. If the spring...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 250 g mass is attached to a horizontal spring and oscillates with a frequency of...

    A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • A 250 g mass is attached to a horizontal spring and oscillates with a frequency of...

    A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. What is the spring constant? B. What is the total energy of the oscillator? What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • 3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency...

    3. A 250 g mass is attached to a horizontal spring and oscillates with a frequency of 2.1 Hz. At one instant the mass is at -4.3 cm and has a horizontal velocity of 25 cm/s. A. What is the spring constant? B. What is the total energy of the oscillator? C. What is the period of oscillation? D. What is the amplitude? E. What is the maximum speed?

  • A hockey puck oscillates on a frictionless, horizontal track while attached to a horizontal spring. The...

    A hockey puck oscillates on a frictionless, horizontal track while attached to a horizontal spring. The puck has mass 0.160 kg and the spring has force constant 8.00 N/m. The maximum speed of the puck during its oscillation is 0.350 m/s. What is the amplitude of the oscillation? What is the total mechanical energy of the oscillation? What is the potential energy of the puck when the displacement of the glider is 0.0300 m? What is the kinetic energy of...

  • A particle with mass 1.39 kg oscillates horizontally at the end of a horizontal spring. A...

    A particle with mass 1.39 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.959 m and a duration of 127 s for 79 cycles of oscillation. Find the frequency, f the speed at the equilibrium position, Vmax, the spring constant, k, the potential energy at an endpoint, Umax, the potential energy when the particle is located 54.1% of the amplitude away from the equilibrium position, U, and the kinetic energy, K, and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT