Question

A tank contains 17.5 ft^3 of Nitrogen (N2) at -100F and 1370kPa. Using the equation for...

A tank contains 17.5 ft^3 of Nitrogen (N2) at -100F and 1370kPa. Using the equation for the ideal gas model, determine the mass of the N2 in kg. pV=mRT where p is the pressure, V is the volume, m is the mass, T is the temperature and, R is the universal gas constant per unit of mass. For N2, R=0.2968 kJ/(kg*K)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A tank contains 17.5 ft^3 of Nitrogen (N2) at -100F and 1370kPa. Using the equation for...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A rigid tank that contains 2.4 kg of N2 at 25°C and 550 kPa is connected...

    A rigid tank that contains 2.4 kg of N2 at 25°C and 550 kPa is connected to another rigid tank that contains 4.4 kg of O2 at 25°C and 150 kPa. The valve connecting the two tanks is opened, and the two gases are allowed to mix. If the final mixture temperature is 25°C, determine the volume of each tank and the final mixture pressure. The gas constants of N2 and O2 are 0.2968 and 0.2598 kPa.m3/kg.K, respectively. The universal...

  • 1. A rigid (constant volume) tank sealed by a valve initially contains 100 kg of air...

    1. A rigid (constant volume) tank sealed by a valve initially contains 100 kg of air at a pressure of 100 kPa and 300 K. At time t = 0, the valve for the air tank is opened in a controlled manner and air leaks out isothermally (constant temperature) of the tank at a constant mass flow rate of 1 kg/s. The valve is closed after 75 seconds. Answer the following questions: Assuming air is an ideal gas, what is...

  • A storage tank at STP contains 20.6 kg of nitrogen (N2). Volume of the tank is...

    A storage tank at STP contains 20.6 kg of nitrogen (N2). Volume of the tank is 16.4 m3 part b What is the pressure if an additional 33.4 kg of nitrogen is added without changing the temperature?

  • 1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of...

    1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of 4.2 m3, is heated to a final pressure of 9.4 bar. Assuming the ideal gas model with k = 1.6 for the argon, determine the heat transfer, in kJ. 2.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 223°C from a pressure of 5.4 bar to a pressure of 1.9 bar. Evaluate the work, in kJ/kg. 3.A mass of 4 kilograms...

  • A piston-cylinder device contains 0.78 kg of nitrogen gas at 140 kPa and 37°C. The gas...

    A piston-cylinder device contains 0.78 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R= 0.2968 kJ/kg-K. The constant volume specific heat of nitrogen at room temperature is Cr=0.743 kJ/kg-K. (Round the final answer to five decimal places.) The entropy...

  • A tank contains 0.508 mol of molecular nitrogen (N2). Determine the mass (in grams) of nitrogen...

    A tank contains 0.508 mol of molecular nitrogen (N2). Determine the mass (in grams) of nitrogen that must be removed from the tank in order to lower the pressure from 35.4 to 19.8 atm. Assume that the volume and temperature of the nitrogen in the tank do not change.

  • A piston-cylinder device contains 0.63 kg of nitrogen gas at 140 kPa and 37°C. The gas...

    A piston-cylinder device contains 0.63 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3. constant. The process ends when the volume is reduced by one-halt. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R-0.2968 kJ/kg K. The constant volume specific heat of nitrogen at room temperature is C -0.743 kJ/kg K. (Round the final answer to five decimal places.) The...

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • A storage tank at STP contains 28.2 kg of nitrogen (N2). Part A: What is the...

    A storage tank at STP contains 28.2 kg of nitrogen (N2). Part A: What is the volume of the tank? Part B: What is the pressure if an additional 26.6 kg of nitrogen is added without changing the temperature? Please answer in degrees Celsius.

  • Check my work 6 10 A piston-cylinder device contains 0.63 kg of nitrogen gas at 140...

    Check my work 6 10 A piston-cylinder device contains 0.63 kg of nitrogen gas at 140 kPa and 37°C. The gas is now compressed slowly in a polytropic process during which PV1.3 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change of nitrogen during this process. The gas constant of nitrogen is R = 0.2968 kJ/kg.K. The constant volume specific heat of nitrogen at room temperature is cy" 0.743 kJ/kg.K. (Round the final...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT