Question

A uniform thin rod of length L = 40.0 cm and mass M = 800 g...

A uniform thin rod of length L = 40.0 cm and mass M = 800 g is pinned so that it can swing about a point that is one-third of the way from one end of the rod. You pull the rod away from equilibrium by a small angle and release it, so that the rod swings back and forth.

(a) What is the period of the rod’s motion as it swings back and forth?

(b) What is the length of a simple pendulum with the same period and the same mass as the rod?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A uniform thin rod of length L = 40.0 cm and mass M = 800 g...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Pendulum A is a physical pendulum made from a thin, rigid, and uniform rod whose length is d. One end of this rod is at...

    Pendulum A is a physical pendulum made from a thin, rigid, and uniform rod whose length is d. One end of this rod is attached to the ceiling by a frictionless hinge, so the rod is free to swing back and forth. Pendulum B is a simple pendulum whose length is also d. Obtain the ratio TA/TB of their periods for small-angle oscillations.

  • A thin uniform rod (mass = 0.440 kg) swings about an axis that passes through one...

    A thin uniform rod (mass = 0.440 kg) swings about an axis that passes through one end of the rod and is perpendicular to the plane of the swing. The rod swings with a period of 1.65 s and an angular amplitude of 10.2°. What is the length of the rod? What is the maximum kinetic energy of the rod as it swings?

  • A thin uniform rod (mass = 0.16 kg) swings about an axis that passes through one...

    A thin uniform rod (mass = 0.16 kg) swings about an axis that passes through one end of the rod and is perpendicular to the plane of the swing. The rod swings with a period of 1.7 s and an angular amplitude of 4.3 degree . (a) What is the length of the rod? (a) What is the maximum kinetic energy of the rod as it swings?

  • A thin uniform rod (mass = 0.90 kg) swings about an axis that passes through one...

    A thin uniform rod (mass = 0.90 kg) swings about an axis that passes through one end of the rod and is perpendicular to the plane of the swing. The rod swings with a period of 1.2 s and an angular amplitude of 2.10. (a) What is the length of the rod? (a) What is the maximum kinetic energy of the rod as it swings? Units (a) Numbe T0.536 (b) Number 10.0015 7 units Units

  • he length of a simple pendulum is 0.65 m and the mass of the particle (the...

    he length of a simple pendulum is 0.65 m and the mass of the particle (the “bob”) at the end of the cable is 0.20 kg. The pendulum is pulled away from its equilibrium position by an angle of 7.7° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? (b) Using the position of the bob at its lowest point...

  • The length of a simple pendulum is 0.75 m and the mass of the particle (the...

    The length of a simple pendulum is 0.75 m and the mass of the particle (the "bob") at the end of the cable is 0.33 kg. The pendulum is pulled away from its equilibrium position by an angle of 9.1° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? (b) Using the position of the bob at its lowest point...

  • (a) Knowing that the moment of inertia of a thin uniform metallic rod of mass m...

    (a) Knowing that the moment of inertia of a thin uniform metallic rod of mass m and length L about an axis through its center of mass is (1/12) ml?, what is its moment of inertial about a parallel axis through one of its ends (show your calculation). (b) A physical pendulum consisting of a thin metallic rod of mass m = 200.0 g and of length L = 1.000 m is suspended from the upper end by a frictionless...

  • (a) Knowing that the moment of inertia of a thin uniform metallic rod of mass m...

    (a) Knowing that the moment of inertia of a thin uniform metallic rod of mass m and length L about an axis through its center of mass is (1/12) mL?. what is its moment of inertial about a parallel axis through one of its ends (show your calculation). (b) A physical pendulum consisting of a thin metallic rod of mass m = 200.0 g and of length L - 1.000 m is suspended from the upper end by a frictionless...

  • Problen /) Derive equations of motion of the system shown below in x and 0 by using Lagrange's method. The thin rigid rod of length is supported as a pendulum at end A, and has a mass m. The rod...

    Problen /) Derive equations of motion of the system shown below in x and 0 by using Lagrange's method. The thin rigid rod of length is supported as a pendulum at end A, and has a mass m. The rod is also pinned to a roller and held in place by two elastic springs with constants k . Problen /) Derive equations of motion of the system shown below in x and 0 by using Lagrange's method. The thin rigid...

  • 11. A uniform thin rod of length L and mass M, pivoted at one end as...

    11. A uniform thin rod of length L and mass M, pivoted at one end as shown above, is held horizontal and then released from rest. Ignore all effects due to friction. (a) Find the angular speed of the rod as it sweeps through the vertical position. solution: 、13g / L (b) Find the force exerted on the rod by the pivot at this instant. solution Mg (c) Starting from the horizontal position, what initial angular speed would be needed...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT